
Utrecht University

Master Thesis

Real-Time Collision-aware Musculoskeletal Model for
Virtual Human Animation

Author:

Francis P. Laclé

ICA-3503534

Supervisor:

Dr. Nicolas G. Pronost

A thesis submitted in fulfilment of the requirements

for the degree of Master of Science

in the

Virtual Human Technology Lab

Department of Information and Computing Sciences

March 2014

http://www.uu.nl
http://vhtlab.nl/
http://www.cs.uu.nl/

Declaration of Authorship

I, Francis P. Laclé, declare that this thesis titled, ’Real-Time Collision-aware Muscu-

loskeletal Model for Virtual Human Animation’ and the work presented in it are my

own. I confirm that:

� This work was done wholly or mainly while in candidature for a master’s degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

“As computers have become more powerful, computer graphics have advanced to the point

where it’s possible to create photo-realistic images. The bottleneck wasn’t, ’How do we

make pixels prettier?’ It was, ’How do we engage with them more?’”

Jefferson Han

UTRECHT UNIVERSITY

Abstract

Bètawetenschappen

Department of Information and Computing Sciences

Master of Science

Real-Time Collision-aware Musculoskeletal Model for Virtual Human

Animation

by Francis P. Laclé

Keywords: biomechanics, computational geometry, computer animation, computer

graphics, the Ultimate Human Model.

This MSc project focused on combining a biomechanical musculoskeletal model with

a high poly musculotendon model for the lower human body. A low-poly cylinder-based

musculotendon unit is constructed that segments muscle and tendon into separate com-

partments. The shape of high poly meshes is approximated through ray-triangle intersec-

tion tests. Point samples are then used to move action lines of the biomechanical model

within the high poly model. Once inside, ray-triangle intersection tests are carried out

again to get a more accurate approximation of the surface of the high poly model. The

method was developed in order to be invariant to spatial and polygonal configurations.

Results with 48 musculotendons for the lower body show a drop of ≈ 84% with respect

to the amount of vertices when compared to the high poly model.

The project also considered real-time as a criterion and introduced a scalar for the

geometrical model allowing each cylinder to be scaled in both longitudinal and latitudinal

directions. The amount of information could therefore be increased or decreased to retain

real-time performance on faster or slower computer hardware. An experiment with 10

muscles resulted in a runtime of 164Hz on average having a total of 25 constraints.

Finally, a custom collision constraint between musculotendons was introduced, coupled

with an area preservation technique used during deformation, which takes advantage of

the cylindrical construction of the real-time model.

http://www.uu.nl)
http://www.uu.nl/faculty/science/
http://www.cs.uu.nl/

Acknowledgements

First I would like to express my gratitude towards my supervisor. He provided me

with all the necessary resources and support that was always accompanied by great

enthusiasm. His remarks and suggestions helped me to focus in the right direction

throughout the course of this MSc project.

Second, I would like to thank all my family and friends. My family for constant support,

and friends for giving me the space and bearing the incremental social distance while I

was working on this thesis.

A special thank you goes to Robin, Bernd, and Michal for proof reading this thesis,

which was a great help in pointing out some obvious grammatical and notational errors.

I am also grateful to live in the 21st century and in a developed country where one

can shower with warm water, which for me served as an idea-incubator for most of the

breakthroughs implemented within this MSc project.

The most important gratitude goes to Nora, whom I love very much. Being someone

quite stubborn, she showed me how to change mindsets and disregard previous erroneous

ideas, and also how to strike the right chord between perfection and efficiency against

the always persistent arrow of time.

Finally, I would like to address our little one (I’m writing this while you are making

funny noises in the background.) Henry, regardless of which path you choose in life,

remember that you only need two things, a thirst for knowledge and perseverance.

iv

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

Contents v

List of Figures viii

List of Tables ix

List of Algorithms ix

Abbreviations x

Symbols xi

1 Introduction 1

1.1 Motivations and Contributions . 1

1.2 Chapters overview . 3

2 Related Work 4

2.1 Musculoskeletal Models in Computer Graphics 4

2.2 Musculotendon Models for Volumetric Deformation 5

3 The Musculoskeletal Model 7

3.1 Anatomical Accuracy and Real-Time Performance 7

3.2 The Biomechanical Musculoskeletal Model 7

3.3 The Polygonal Skeleton Meshes . 9

3.3.1 Attaching the Skeleton Meshes . 10

3.3.2 OpenSim Bodies in Cartesian Coordinates 11

3.3.3 Semi-Automatic Skeleton Mesh Alignment 13

3.4 A Simple Geometric Musculotendon Model 15

3.4.1 Adding Action Lines and Via Points 16

3.4.2 Adding Volume with Cross Sections 19

v

Table of Contents vi

3.4.3 Including Tendons into the Model 20

3.5 Geometrical Enhancement with the UHM 23

3.5.1 Preparing the UHM Meshes . 24

3.5.2 The UHM Mesh Shape Analysis 26

3.5.3 A Technique for Musculotendon Enhancement 28

3.5.3.1 Repositioning C’s on the Surface of U 29

3.5.3.2 Repositioning Elements of A within the Volume of U . . 30

Match Detection . 30

Permuting Matches . 32

Determining an Interior ”Inner” Point 33

3.5.4 Iterating the Enhancement Process 34

3.6 Adapting the LOD of the Musculotendon Model 35

3.6.1 Longitudinal and Latitudinal Scaling 35

3.6.2 Hexagons as a Lower Bound for Ck 36

3.7 Drawing the Cylinder-based Musculotendon Unit 37

3.7.1 Triangle Fans and Triangle Strips 38

3.7.2 Applying Textures . 38

4 Real-Time Collision Detection and Response 40

4.1 Custom Strategy for Discrete Collision Detection 41

4.1.1 Collision Constraints for Muscle and Skeleton 41

4.1.2 Discrete Collision Detection with Ray Casting 42

4.2 Collision Response . 44

4.2.1 Retaining Cross Sectional Areas through Inflation 44

5 Results and Discussion 47

5.1 The UHM Enhancement . 47

5.1.1 Non-linear Longitudinal Scaling . 48

5.1.2 Approximating the UHM at Different Scales 48

5.1.3 Match Detection . 51

5.2 Collision Detection and Response . 52

5.2.1 Radii Inflation . 53

5.3 Real-Time Performance . 53

6 Conclusion and Future Work 56

6.1 Improvements and Future Considerations 57

6.1.1 Biomechanical Accuracy . 57

6.1.2 Extending the Musculotendon Model 58

6.1.2.1 Linked Transformation Correction for A 58

6.1.2.2 Multiple Action Lines for Wide Attachments 59

6.1.2.3 Distinct Heads . 59

6.1.2.4 A Geometric Representation for Ligaments 59

6.1.3 Complete Collision Detection and Response 60

6.1.4 The Musculotendon Model for FEM and Inverse Dynamics 60

Bibliography 62

Table of Contents vii

A List of Included Musculotendons (OpenSim) 1

B Ralph’s Bone Hierarchy (RAGE) 2

C Upper and Lower Body Skeleton Hierarchy (OpenSim) 3

D List of Included UHM Meshes 4

E Edge List Sort Algorithm 6

F Area and Centroid Calculation 8

List of Figures

1.1 Schematic plot between real-time performance and computational accuracy 1

3.1 Screenshots showing three muscle paths rendered in OpenSim and RAGE 8

3.2 Different coordinate systems used in OpenSim and OGRE/RAGE 9

3.3 Kinematic relationship between OpenSim bodies in generalised coordinates 11

3.4 Rotation of OpenSim bodies along a curved path using spline functions . 12

3.5 Visible problems after attaching OpenSim skeleton meshes 13

3.6 Difference between automatic and semi-automatic skeleton alignment . . . 15

3.7 Walk-cycle animation history plot showing attached skeleton 15

3.8 Screenshots showing one action line with and without via points 18

3.9 Three figures showing different up-vectors for cross sections 19

3.10 Schematic representation of a musculotendon actuator 20

3.11 Schematic representation of the musculotendon model 23

3.12 Comparison between closed and open UHM mesh 24

3.13 Self-intersection issues with the UHM . 25

3.14 Dividing the UHM meshes for multiple action lines for one musculotendon. 25

3.15 Two results from the analysis of the UHM meshes 27

3.16 General idea for enhancing the musculotendon model 28

3.17 Schematic figures showing the first preference for P ’s 29

3.18 Schematic figure showing the second preference for pi’s 30

3.19 Schematic figure showing a key example of the enhancement process . . . 31

3.20 Schematic figure showing same set E1 for two different outcomes 32

3.21 An example illustrating two types of inner point determination. 34

3.22 Illustration of polygons inscribed in closed conic sections 37

3.23 Hierarchy of drawing steps and illustration of internal coordinate system . 38

3.24 Illustration of cylinder buildup using triangle fans and strips. 39

3.25 Screenshots showing different textured tendons and muscles 39

4.1 Illustration of collision constraints between two muscles Mx and My . . . 42

4.2 Direction of cast rays confined by transversal constraints 43

5.1 Pre and post UHM enhancement of the lower body musculoskeletal model 47

5.2 Some examples for inner point determination 49

5.3 Misplaced action line due to partial convergence 49

5.4 UHM approximation of the Tibialis Anterior in eight different scales of Ck 50

5.5 Three results without and with constraints 54

5.6 Displacement for two consecutive cki ’s shown as black line segments 55

6.1 Linked transformation correction for a muscle path 58

6.2 Schematic figures showing how volume of segments can be computed. . . . 60

viii

List of Tables

3.1 Biomechanical parameters included in this project 9

3.2 Summarised description of muscle path constraints in OpenSim 17

3.3 One result for the scaled tendon slack length of the Tibialis Anterior . . . 22

3.4 Including the sign of algebraic radii allows Ek to be permuted accordingly 33

5.1 Vertices of 48 musculotendons in 12 different scales compared to the UHM 48

5.2 Amount of ak outside an UHM mesh for LSS = 1 51

5.3 Amount of ak outside an UHM mesh for LSS = 2 51

List of Algorithms

1 Permutation σ given in pseudo-code that returns EK containing a sequence

of matches winding through from one end till the other end of UCk 33

2 The order of steps executed during the UHM enhancement process. 35

ix

Abbreviations

CoM Centre of Mass

CSS Cross Sectional Scalar

DOF Degree Of Freedom

FE Finite Element

FEM Finite Element Method

FFD Free Form Deformation

FPS Frames Per Second

FVM Finite Volume Method

GPU Graphics Processing Unit

HACD Hierarchical Approximate Convex Decomposition

IAR Instantaneous Axis of Rotation

LOD Level Of Detail

LSS Longitudinal Segment Scalar

OGRE Open-source 3d GRaphics Engine

RAGE Real-time Animation Game Engine

UID Unique IDentifier

UHM Ultimate Human Model

XML eXtensible Markup Language

x

Symbols

A vector space defining action-line of a musculotendon ak = (x, y, z)T in R3

BR OpenSim body in relative coordinates (x, y, z)T coordinates in R3

BW OpenSim body in world coordinates (x, y, z)T coordinates in R3

Ck vector space defining each cross section of ak cki = (x, y, z)T in R3

Dk vector space defining a deformed cross section of ak dki = (x, y, z)T in R3

M main vector space defining a musculotendon mg = (x, y, z)T in R3

O transformed coordinates from OpenSim into RAGE vertex positions in R3

U high poly mesh from the UHM vertex positions in R3

rki radius that determines location of cki R

V vector space defining via points of a musculotendon equal to a particular ak

α pennation angle rad

∆ function for triangle area with given parameters R

κ transversal line segment used for collision constraint two tagged cki ’s

µk displacement of ak due to collision (x, y, z)T coordinates in R3

φ alternate interior angle determined by κ rad

ρ penetration depth determined by κ R

σ permutation on Ek indices of matches ek ∈ N

ω free area for deforming Ck R

Note: The above lists some of the more important symbols present within this thesis.

In addition, arrows for denoting vectors are omitted in order to improve readability.

xi

To my pioneering father. May he rest in peace.

xii

Chapter 1

Introduction

1.1 Motivations and Contributions

In computer science there exists the underlying difficulty of balancing real-time perfor-

mance versus computational accuracy, as illustrated in Figure 1.1. This tug of war is

also prevalent in the fields relevant to this MSc project, namely computer graphics and

animation, where visualisation and naturalness of character motion plays a large role.

Future
Uncertainty
Quadrant

current
compromise

Real-Time Performance

C
om
pu
ta
tio
na
l A
cc
ur
ac
y

Real-Time Framerate
Geometric Accuracy/
Numeric Precision

Figure 1.1: Schematic plot of real-time performance of commodity hardware versus
computational accuracy. As hardware improves, the middle way (illustrated as the
yellow dot) will shift to an undetermined point in the upper right quadrant with ever
increasing accuracy. Therefore, this intersection point is dependent on the current state

of computational accuracy and graphical performance.

For this MSc project, this meant creating a middle way between having an accurate

anatomical musculoskeletal model suitable for FE simulations and real-time performance

1

Chapter 1. Introduction 2

of the animation/simulation. Because the compromise will shift in the future depending

on the hardware being used, it is useful to create a musculotendon model that is scalable

with respect to accuracy. This scaling for real-time applications was incorporated into

the project, next to a Hill-type biomechanical model that brings with it certain bene-

fits. For instance, muscle paths are usually prearranged in models and thus prevents

the tedious work of manually attaching each muscle with guidance of an anatomist. It

also allows the validation of approaches that use individual as well as groups of mus-

cles for static-optimisations on top of kinematic-based motions. An even more exciting

possibility is using models to help solve dynamic-optimisation problems and achieve re-

alistic physics-driven motion. Another advantage for students and researchers new to

the field is that these rigorously tested biomechanical models can be freely obtained

through open source simulators such as OpenSim (The National Center for Simulation

in Rehabilitation Research, 2010), speeding up collaboration and progress. As Millard

et al. (2013) described, biomechanical models usually come with a myriad of data such

as coordinates for attachment points, maximum isometric forces, optimal fibre lengths,

pennation angles, and so forth.

Current biomechanical models, although accurate and fast for real-time applications

(Millard et al., 2013), are also heavily simplified and usually represent musculotendons

as polylines without any polygonal geometry. This MSc project is meant to bridge that

gap by allowing high poly meshes to be approximated with embedded biomechanical

polylines. The use of an underlying biomechanical model removes the need to manually

align anatomical musculotendons, while the approximation of high poly models remove

the need for mesh preparation, as approximated versions remain simple with segmented

area and volume for muscle and tendon compartments. Thus making them ready to

be used in real-time applications where volumetrically discretised musculotendons are

required.

The original aim of this MSc project was to investigate the possibility of simulating mus-

culoskeletal injuries in real-time using accurate numerical techniques such as FEM(Laclé,

2013). However, as the project progressed it became clear that there are other problems

obscured by the real-time simulation of injuries:

1. The inclusion of anatomical polygonal models for higher geometric accuracy.

2. The inclusion of biomechanical models for biomechanical accuracy.

3. Implementing a collision-free system coinciding with real-time performance.

Applications in real-time computer animation that would use biomechanical muscu-

loskeletal models, such as musculoskeletal injury simulation, orthopaedic training, and

Chapter 1. Introduction 3

validation of biomechanical effects for animated characters are thus directly dependent

on the solution to these problems. Hence, this project focused mainly on addressing

these three problems.

The main contribution of the MSc project and this thesis are a novel way to approximate

high poly anatomical meshes of musculotendons in a way that can be discretised into

tetrahedrons while retaining a low amount of vertices with as much features of its high

poly counterpart as possible. Making it possibly useful for real-time FE simulations.

Moreover, a collision detection and response strategy was designed for geometric muscu-

lotendon models in real-time with an accurate area and consequently volume preservation

technique. Additionally a strict consideration for sustainable real-time deformation was

given, using a cylinder-based musculotendon construction that is similar to the early

work of Wilhelms and Van Gelder (1997), but created using triangle fans and strips for

an optimal GPU footprint. In addition, for finer accuracy on more capable hardware,

an adaptive LOD scheme is developed.

What is not included within the scope of this MSc project are a physics-based repre-

sentation and a FE solver. Although a physics-based representation was developed in

Bullet Physics (Coumans, 2013) with a spring-mass scaffold controlled by a couple of

kinematic constraints. However, as discussed in Chapter 4, this approach turned out

be unsuitable for musculoskeletal modelling and was left out of scope. Nonetheless, the

model presented here was constructed in a way that makes it portable for real-time

physics-engines.

1.2 Chapters overview

The remainder of this thesis is structured as follows. Chapter 2 briefly discusses previous

musculoskeletal models used in the field of computer animation and computer graphics,

followed by a brief review of volumetric models developed for FE simulations. Chapters

3 and 4 will thoroughly discuss the musculoskeletal model and the collision strategy

that were developed for this project. The elaborate chapters are also meant for readers

who are considered as newcomers to this particular area within the field of computer

animation and computer graphics. Chapter 5 discusses the results, and finally Chapter

6 ends with concluding remarks with hints at future applications and improvements for

the combined musculotendon model.

Chapter 2

Related Work

2.1 Musculoskeletal Models in Computer Graphics

Polygonal musculotendon models for computer graphics and animation are visualised

and controlled using different approaches to augment character movement and simulate

musculoskeletal deformation (Lee et al., 2010; Ramos and Larboulette, 2009; Aubel and

Thalmann, 2001a,b; Albrecht et al., 2003; Mohr and Gleicher, 2003; Lee and Ashraf,

2007; Sueda et al., 2008). One of the first approaches to incorporate muscles into this

domain was Chadwick et al. (1989) that used an FFD lattice to kinematically deform

skin with underlying muscle. Later, Thalmann et al. (1996) used meta-balls to define

the underlying musculature. At specific intermediate distances, along each bone segment

they create orthogonal cross sections to define the shape of the combined meta-balls.

This is similar to the musculotendon construction discussed in Chapter 3, except here

cross sections are formed along musculotendon action lines obtained from a biomechan-

ical model. Thalmann et al. (1996) also used ray-casting to extract contours in order

to form the skin of the character, which is the basic principle used in this MSc project

to approximate features of high poly musculotendon meshes. A year later, Scheepers

et al. (1997) published another geometric-based approach that included a procedurally

created skeleton and elliptical muscles with added volume preservation. In that same

year, Wilhelms and Van Gelder (1997) publishes a different geometric approach that

uses discretised cylinders for musculotendons attached unto skeleton meshes. It was

one of the first works to use the concept of a pivot point, which is equivalent to the

contemporary labelled via point. Their work was also the primary inspiration for the

cylinder-based musculotendon model presented here, as it brought with it some practical

real-time benefits such as radii-based deformation, as discussed in Chapter 4.

4

Chapter 2. Related Work 5

2.2 Musculotendon Models for Volumetric Deformation

Early work of Chen and Zeltzer (1992) showed that FEM could be combined with a

classical biomechanical model for calculating muscle forces, which paved the way for a

new generation of FEM and FVM-based approaches such as Zhu et al. (1998); Hirota

et al. (2001); Lemos et al. (2001); Teran et al. (2003, 2005); Lee et al. (2009). Regarding

FEM mesh generation, Jacobson et al. (2013) introduced in 2013 a novel method that is

slightly similar to the winding-principle used in the match detection technique discussed

in subsection 3.5.3.2 for the creation of volumetric meshes. While their method outputs

FEM-ready meshes that are watertight, they still contain at least three times more

vertices than the original input mesh, and thus not suitable for real-time applications.

Berranen et al. (2012) used both FEM meshes and a modified Hill model for real-

time deformation analysis, where contractile muscle forces operate between adjacent

nodes of the FEM mesh. This is one of the few recent work found that combined a

Hill-type biomechanical model with a volumetric FEM mesh with promising real-time

performance, albeit the result included just a single musculotendon. Around half a

decade earlier, Lee et al. (2009) published an elaborate upper body model, using the same

dataset as this MSc project, namely the UHM (Snoswell, 2003). The UHM geometry was

processed, as is the case here (refer to subsection 3.5.1), and volumetrically discretised

for FEM. They also incorporated a Hill-type biomechanical model on the action line for

the computation of muscle forces for forward dynamics.

In general, FEM is still considered to be too computationally expensive for real-time

simulations. Even more so when not one but several musculotendon units that are

attached to the skeleton have to be simulated in concert, with active collision detection

and response strategies next to the FE solver. To start looking at these challenges, it is

handy to set a lower bound for the least amount of vertices that a musculotendon model

should contain. Such a lower bound is discussed in subsection 3.6.2 having the goal of

allowing a very low amount of vertices to be considered but still with an acceptable limit

of accuracy for real-time applications.

Work from Blemker and Delp (2005) also created volumetric meshes by mapping a

template hexahedral mesh to another target hexahedral mesh using projections and

Delauney triangulation. As a target shape for each map, two dimensional outlines of

cross sections, sampled with MR imaging, were used and projected in three dimensions,

which is similar to the UHM enhancement technique discussed in section 3.5. Fibre

geometries were also created separately as rational Bezier spline curves with template

schemes for parallel, pennate, and fan based muscle fibre architectures. Blemker and

Delp (2005) concluded that this three dimensional approach to musculotendons such

as the Gluteus group, Psoas, and Iliacus exhibited enough diverse behaviours that it

Chapter 2. Related Work 6

provided an added value of accuracy for estimating moment arms of muscle fibres; at

least for this tested group of musculotendons. While this approach could ultimately

render the use of classical Hill-type models, which are polyline-based with via points

obsolete, it is still considered early work particularly when real-time usage of classical

models are increasing in accuracy as the latest benchmark result of Millard et al. (2013)

shows.

Similarly, work of Kohout et al. (2012) took a combined approach labelled as surface-

first and fibres-first. With surface-first, volume preservation is solved followed by de-

composing the muscle compartment into fibres, where they are arranged using the

template-based approach from Blemker and Delp (2005). Fibres-first starts from muscle-

decomposition and represents fibres as a spring-mass system. They claim to solve col-

lisions for both approaches, but unfortunately not much detail is given on how this is

done. Furthermore, their result is not fast enough for real-time applications requiring

above 60Hz performance on commodity hardware. To improve realism, recent work

of Sánchez et al. (2014) stepped entirely away from template-based approaches and

proposed a new workflow for embedding subject-specific fibre fields in FE models of

musculotendons. They show that incorporating this information into their models led

to a 10%-20% difference in predicting net muscle forces of specific patients.

As these last references and others such as Tan et al. (2012) imply, the next frontier is

indeed modelling on the scale of fibres, however it could still take some years before this

can be considered a possibility in the real-time domain.

Chapter 3

The Musculoskeletal Model

3.1 Anatomical Accuracy and Real-Time Performance

This project aims to develop a model that approximates anatomical accuracy and is ca-

pable of real-time or interactive performance. To help reach this objective, the following

two criteria are considered:

• The model should include at least one anatomical model and one biomechanical

model to help approximate anatomical and physical correctness.

• The geometrical model has to be flexible i.e. scalable with respect to its level of de-

tail (LOD). On faster computer hardware this allows more geometrical information

to be processed in real-time.

The process that culminated in the end result of each of the above mentioned criteria is

described in the following sections.

3.2 The Biomechanical Musculoskeletal Model

Biomechanical models include data that are relevant to the physical aspects of the

musculoskeletal model such as positions of attachment points of muscles relative to their

attached skeletal bone, length and arrangement of muscle fibres, isometric forces, etc.

For this project it was decided to use the combined model from Menegolo (2011) that

was developed for the open source software known as OpenSim (The National Center

for Simulation in Rehabilitation Research, 2010; Delp et al., 2007; Seth et al., 2011)1.

1OpenSim allows researchers, students, and health professionals to develop and test biomechanical
models for dynamic simulations of movement.

7

Chapter 3. The Musculoskeletal Model 8

It is based on research that was carried out for both the upper and lower halves of the

human body, which became the main reason to include it in the project. The model of

Menegolo (2011) is backed up by the following associated publications:

1. An interactive graphics-based model of the lower extremity to study orthopaedic

surgical procedures (Delp et al., 1990).

2. A planar model of the knee joint to characterize the knee extensor mechanism

(Yamaguchi and Zajac, 1989).

3. A dynamic optimization solution for vertical jumping in three dimensions (Ander-

son and Pandy, 1999).

4. Dynamic optimization of human walking (Anderson et al., 2001).

5. A model of the upper extremity for simulating musculoskeletal surgery and ana-

lyzing neuromuscular control (Holzbaur et al., 2005).

The model of Menegolo (2011) also includes polygonal meshes for the bones of the human

skeleton. Using the same meshes for the skeleton came in handy while testing and

verifying the attachment of muscles to make sure they are correct, especially when the

skeleton meshes were scaled and oriented semi-automatically to fit the current animated

character. Placement of points relative to transformed skeleton meshes could thus be

visually compared with the result in OpenSim. Figure 3.1 shows one example where this

is the case.

(a) Musculoskeletal Model in OpenSim. (b) Musculoskeletal Model in RAGE.

Figure 3.1: Screenshots from OpenSim (a) and custom implementation of a Mus-
culoskeletal Model (b) within the Real-time Animation Game Engine (RAGE) from
Utrecht University. Visible are three muscles from Menegolo (2011) rendered as ac-
tion lines. Green cubes represent attachment points for each muscle’s origin, while
yellow cubes represent attachment points of each muscle’s insertion. All three muscles
collectively represent the Gluteus Medius muscle on the right side of the sagittal plane.

One drawback of Menegolo (2011) that became apparent was that not all parameters

were included for the upper body, notably the parameters mass and centre of mass were

missing from all skeleton meshes pertaining to the upper body. These would have been

beneficial for use in a physics-based simulator. The model does include a complete set

Chapter 3. The Musculoskeletal Model 9

of upper and lower body skeleton meshes that were used within this project, however

solely the biomechanical muscle data of the lower body was included as first tryout.

This is because the lower body, which includes the pelvis, is the predominant actuator

of active and passive forces during locomotion of the bipedal human body, and this

ability to move from one place to another plays an important part in the synthesis of

human movement. Moreover, data from upper body biomechanical models can always

be included at a later stage. Appendix A gives a complete list of all the muscles used in

this project and Table 3.1 lists all six biomechanical parameters that were used for the

lower body.

Parameter name (Muscle) Dataset Object Type

maximum isometric force Thelen 2003 & Schutte 1993 musculotendon

optimal fiber length Thelen 2003 & Schutte 1993 musculotendon

tendon slack length Thelen 2003 & Schutte 1993 musculotendon

pennation angle Thelen 2003 & Schutte 1993 musculotendon

centre of mass Menegolo (2011) (lower body) OpenSim body

mass Menegolo (2011) (lower body) OpenSim body

Table 3.1: Biomechanical parameters from Menegolo (2011) included in this project.

3.3 The Polygonal Skeleton Meshes

The polygonal meshes from Menegolo (2011) representing the human skeleton had to be

prepared and converted prior being able to use them in OGRE/RAGE. The conversion

process started with transforming the skeleton meshes from the Cartesian coordinate

system in OpenSim to the Cartesian coordinate system used in OGRE/RAGE. OpenSim

utilises the laboratory coordinate system (Lund and Hicks, 2012) that is different than

what is used in motion capture systems or popular 3D authoring software. Figure 3.2

illustrates orthonormal basis vectors of OpenSim versus ones used in OGRE/RAGE.

OpenSim

z

y

x

(a) Orthogonal basis vectors in OpenSim.

OGRE/RAGE

x

y

z

(b) Orthogonal basis vectors in OGRE/RAGE.

Figure 3.2: Different orthogonal bases in OpenSim compared to OGRE/RAGE. Open-
Sim uses the laboratory coordinate system where the z axis is switched with the x axis.

Chapter 3. The Musculoskeletal Model 10

The orthonormal transformation O equals the multiplication of coordinates of every

vertex of every skeleton mesh in OpenSim and is given by the 3x3 rotation matrix:

O =


xr

yr

zr

 =


0 0 1

0 1 0

1 0 0



xo

yo

zo

 (3.1)

where (xo, yo, zo)
T are the coordinates of vertices of the skeleton meshes in OpenSim and

(xr, yr, zr)
T are the new transformed coordinates of these vertices, ready to be used.

3.3.1 Attaching the Skeleton Meshes

Once the coordinates were transformed and exported came the task of attaching the

polygonal meshes unto an animated character. Throughout this project, one of the

characters of the Virtual Human Technology Lab, nicknamed Ralph, was used as the

character that incorporated the musculoskeletal model. Ralph comes with its own joint

(or bone) hierarchy for animation2. As reference, Ralph’s complete bone hierarchy is

given in Appendix B. In order to attach each skeleton geometry on a particular joint

or bone of Ralph, the two hierarchies first had to be mapped. This mapping between

the two separate hierarchies occurred offline as both OpenSim and OGRE have different

ways of representing each.

The OpenSim framework stores attached skeletal geometry in so-called bodies provided

by the Simbody toolkit. Bodies are linked through OpenSim’s joint system. Each can

have multiple geometries attached forming a hierarchical tree where each linked body

represents one node and each node can consist of zero or more leafs that represent

skeleton meshes3.

All the relationships between parents and children were mapped using the Extensible

Markup Language (XML) and added via OGRE using Ogre::TagPoint objects. The

following snippet gives a snapshot of the end result:

<ogre_bone id="15">

<opensim_mesh ogre_child="16" opensim_child="24">22</opensim_mesh>

<opensim_mesh ogre_child="16" opensim_child="24">23</opensim_mesh>

</ogre_bone>

<ogre_bone id="16">

<opensim_mesh ogre_child="-1" opensim_child="-1">24</opensim_mesh>

<opensim_mesh ogre_child="-1" opensim_child="-1">25</opensim_mesh>

<opensim_mesh ogre_child="-1" opensim_child="-1">26</opensim_mesh>

<opensim_mesh ogre_child="-1" opensim_child="-1">27</opensim_mesh>

2To prevent confusion, the term bone hierarchy will be used throughout this thesis to represent the
matrix palette skinning technique typically used for skinned animations in OGRE and RAGE.

3The OpenSim hierarchy of Menegolo (2011) is visualised in Appendix C for a complete overview

Chapter 3. The Musculoskeletal Model 11

<opensim_mesh ogre_child="-1" opensim_child="-1">28</opensim_mesh>

<opensim_mesh ogre_child="-1" opensim_child="-1">29</opensim_mesh>

<opensim_mesh ogre_child="-1" opensim_child="-1">30</opensim_mesh>

<opensim_mesh ogre_child="-1" opensim_child="-1">31</opensim_mesh>

</ogre_bone>

<ogre_bone id="17">

<opensim_mesh ogre_child="18" opensim_child="37">32</opensim_mesh>

</ogre_bone>

Due to the difference in hierarchies, an XML schema proved to be versatile in the creation

of a quick mapping scheme. Unique identifiers (UID’s) of skeleton meshes could be added

to specific bones satisfying the 1 : N cardinality requirement, where e.g. both tibia and

fibula would fall under the right knee bone of Ralph. In addition, relationships between

parent and child could be mapped by adding other UID’s as children. −1’s were added

for user friendliness, indicating unused values.

3.3.2 OpenSim Bodies in Cartesian Coordinates

As mentioned in the previous subsection, OpenSim encapsulates skeleton meshes within

body objects for their physics-based simulator. Each body is defined in internal coor-

dinates that are generalised in order to help solve multi-body dynamics (Sherman and

Eastman, 2012), shown in Figure 3.3. As each coordinate of a body is linked and param-

eterised to another body in a relative frame of reference (Hicks, 2012b), it was useful to

know where OpenSim bodies were positioned relative to OpenSim’s world origin. This

unlinking of bodies came in handy during the skeleton alignment algorithm described in

subsection 3.3.3 and also when verifying the transformation of custom OpenSim joints.

B(i-1)parent body

contains
skeleton
meshes

oi-11

2oi-1
oi-13 di-1

B(i)child body

contains
skeleton
meshes

di
oi1

2oi

oi3

Ground (0,0,0)T

z

y

x

IAR

Figure 3.3: Kinematic relationship between two bodies in OpenSim defined in a
relative frame of reference and connected by a joint, the instantaneous axis of rotation

(IAR). Adapted from Christophy (2010); Hicks (2012b).

Chapter 3. The Musculoskeletal Model 12

The Cartesian coordinates of each OpenSim body are given by:

BW(i) =

BR(0) if i = 0

BR(i− 1) + BW(i− 1)− BR(i) if i > 0
(3.2)

where BW gives world coordinates for position and rotation of a bodies, i ∈ N is an

index in the body’s hierarchy, and BR represents the relative coordinates with respect

to the IAR. Which define the displacement vectors d and co-rotational bases {o1, o2, o3}
that both displace and rotate each body about the connecting point of the joint (the

IAR) in Figure 3.3.

OpenSim also includes complex biomechanical joints next to the traditional variety of

mechanical joints (such as welded, pin, slider, etc.) to model joints more accurately

(Seth et al., 2011). One type of complex joint uses natural cubic splines to let the IAR

interpolate along curved paths. One example for rotation of the knee along xy-plane

with a fitted natural cubic spline is shown in Figure 3.4.

Figure 3.4: xy planar displacement of the fibula and tibia interpolated along a spline
curve with respect to the knee joint angle θ. The position of the knee is illustrated at

three flexion (negative) angles, namely 0◦, 60◦, and 120◦. From Seth et al. (2011).

The natural cubic spline function used in OpenSim had to be reimplemented in this

project in order to complete the unlinking of bodies to acquire the world positions and

orientations of all subsequent children bodies. With all bodies unlinked it is possible

to compute the length of each skeleton mesh for the semi-automatic skeleton alignment

described in the next subsection.

Chapter 3. The Musculoskeletal Model 13

3.3.3 Semi-Automatic Skeleton Mesh Alignment

The next step, once the skeleton was attached, was to align each mesh along Ralph’s

bone hierarchy. A couple of problems that needed to be addressed, shown in Figure

3.5, became apparent after the attachment routine. The first problem was dealing with

different starting poses. The starting pose used in Menegolo (2011) is the relaxed-pose

with both arms hanging loose, while in Ralph the starting pose is the more common

t-pose. Next, scaling issues were also noticeable due to different anthropometric pro-

portions in the hierarchical body compared to Menegolo (2011). Each skeleton mesh is

also relatively positioned from its own world origin, which caused differences at certain

areas.

(a) Front-view with complete skeleton attached. (b) Close-up of Ralph’s head with floating skull.

Figure 3.5: The bone hierarchy is visualised as black line segments connected by
orange cubes. (a) shows the difference in initial poses between OpenSim and Ralph,
scaling issues such as gaps at the knee joint, and a more obvious problem highlighted
in (b) with the skull base meshes due to relative transformations present in mesh files.

In addition, certain bones were not correctly placed anatomically. For instance, the

skullbase bone was artistically placed at the top of the head to include all vertices

during the skinning process, however this placement is anatomically incorrect because

it lies too much on the top end of the skull. A more representative location would be

in the centre of the skull, placing the skullbase bone equally distanced between the

anatomical occipital and frontal bones. One solution for the skull base meshes is to

simply reattach them on another bone, such as the last neck bone vc2. The hierarchy

map written in XML is flexible enough to allow this, but unfortunately preliminary

tests showed that the skull was still not entirely at the centre of Ralph’s head. These

unresolved complications resulted in the development of a semi-automatic approach

where certain transformations would be initially carried out online and supplemented

with manual adjustments.

Chapter 3. The Musculoskeletal Model 14

The automatic alignment of skeleton meshes depended on the two transformations ro-

tation and scale as these required less granular adjustments. To address scale, the

transformation from internal coordinates to Cartesian coordinates for OpenSim bodies

opened up the possibility to calculate anthropometric distances in Menegolo (2011) and

compare these with distances from the bones of Ralph. A scaling ratio was then calcu-

lated and applied in the transformation of each mesh. To address rotation, the shortest

rotational arc between bones and bodies from the separate hierarchies were calculated

using quaternion functions from OGRE4.

The final result can be seen in Figure 3.6a. Scaling has improved for some areas such as

the gap at the knee joints, but there are still visible problems with rotation (e.g. with

the arm attachments) due to relative transformations present in the skeleton mesh files.

Figure 3.6a makes clear that although the automatic scaling and rotation techniques

improves initial errors, the following pair of problems still remains to be solved:

• Relative displacements present in each skeleton mesh file.

• Artistic differences in the bone hierarchy compared to the OpenSim hierarchy.

Furthermore, one requirement with automatic alignment is that each transformation

requires a link with a child in both hierarchies in order to compare distances. Such cases

are not always present, such as skeleton meshes of the forefoot that are attached to leaf

nodes in the bone hierarchy of Ralph. Hence, to resolve the above mentioned issues, it

was decided to add an extra pre-processing step that would adjust all three transforma-

tions, namely translation, rotation, and scale with hard coded values. For translations,

manual adjustments were already planned as automating translations requires techniques

to automatically determine boundaries of each skeleton mesh to determine how far away

a mesh should reside from a bone. In addition, translations require fine control (on each

separate axis) to achieve a good result. Manual adjustments also created the possibility

to interactively alter each mesh, which speeded up the manual alignment process. The

outcome of the semi-automatic alignment process is visible in Figures 3.6b and 3.7.

4As a reference, the function that computes the rotational difference in quaternions can be studied
in Torus Knot Software Ltd (2013).

Chapter 3. The Musculoskeletal Model 15

(a) Front-view showing automatic alignment. (b) Front-view showing semi-automatic alignment.

Figure 3.6: Automatic skeleton alignment with respect to scale and rotational trans-
formation is not enough as shown in (a). The final result is shown in (b). Adjustments
can be made for each of the three transformations with three DOF totalling nine DOF.

Ralph’s skin-transparency was also set to be interactively adjusted, which demonstrated

to be an effective way to visualise penetrations of the inner skeleton and later on the

musculoskeleton.

Figure 3.7: Once the semi-automatic skeleton alignment was completed on the initial
pose, an animation for Ralph was loaded to further look for penetrations with the mesh
of Ralph, i.e. if the skeleton was fully contained. As a visual aid, an extra widget
was added to RAGE’s GUI to interactively change the transparency of Ralph’s mesh
in OGRE. The above figure shows an animation history plot of Ralph loaded with a

walk-cycle animation and Ralph’s mesh transparency set to 50%.

3.4 A Simple Geometric Musculotendon Model

The geometrical musculotendon model combines muscle and tendons into a single geo-

metrical object. Each musculotendon can be defined by the following vector space M

Chapter 3. The Musculoskeletal Model 16

with dimension n as the index counter is positive and zero-based:

M =
{
m0,m1, ...,mn−1 | mg ∈ R3

}
(3.3)

where each element mg is a position vector in R3 Cartesian coordinates. The initial

shape of the musculotendon can be thought of as a closed cylinder with the starting

point, the origin point, lying at the centre of the top cap. This point is attached

relative to a specific bone in the bone hierarchy, which can also contain other siblings

representing other musculotendons or other skeleton meshes. The end point, or insertion

point, at the centre of the bottom cap is attached relative to either the same or another

bone in the hierarchy. OpenSim refers to these two attachments as fixed points in their

framework (Hicks, 2012b)5. All attachments are children of a bone where the attached

skeleton meshes are part of the same OpenSim body as the musculotendons in the data

of Menegolo (2011)6.

3.4.1 Adding Action Lines and Via Points

Biomechanical models, such as those used in OpenSim (The National Center for Sim-

ulation in Rehabilitation Research, 2010), usually simplify a musculotendon as a line

or a set of connected lines, referred as the action line between the origin and insertion

coordinates (Delp et al., 1990) that defines each muscle’s path. The action line, shown

in Figure 3.1a, lies at the core of the models in Menegolo (2011), which for some parts

was designed to match moment arms that where measured experimentally (Holzbaur

et al., 2005). An action line is defined as a vector space of subset A in this thesis and is

always contained within the boundary of M , hence A (M , and given as:

A =
{
a0, a1, ..., an−1 | ak ∈ R3

}
, |A| ≥ 2 and (3.4)

where each ak is a position vector on the action line representing coordinates in R3. The

first and last element of A represent the attachment coordinates linking musculotendons

to their respective meshes of the skeleton. During animation, the origin and insertion

coordinates are updated kinematically as each attached skeleton mesh also moves with

the character’s animated bones.

Besides origin and insertion attachments, the biomechanical model of Menegolo (2011)

includes an additional set of constraints that are supported by The National Center for

Simulation in Rehabilitation Research (2010), such as wrapping surfaces, via points, and

5Points are sometimes used as simplified constructs in real-time simulators. In actual biological
systems musculotendons are usually attached at sites, known as entheses, and not at a single point
(McGonagle and Benjamin, 2013).

6Refer to section 3.3 for more information on the bone hierarchy used for this project.

Chapter 3. The Musculoskeletal Model 17

moving muscle points that allow the model to approximate empirical data more closely.

A brief description of each is given in Table 3.2.

Constraint Type Description

Wrapping Surface Simple primitives (spheres, ellipsoids, cylinders, and torii)

that allow the action line to wrap around the primitive’s

surface. Uses two extra points placed on tangents of the

primitive that define the point of contact initiation and

of contact breaking.

Via Point Extra attachment points fixed to an OpenSim body and

activated when a specific parameter (such as a joint’s knee

angle) lies in a given range.

Moving Muscle Point The coordinates of this constraint are passed as functions

such as natural cubic splines instead of constants. Useful

for moving the action line when an articulate body is

being flexed or extended and a wrapping surface is not

sufficient to recreate the proper motion.

Table 3.2: Summarised descriptions of constraints within OpenSim (Hicks, 2012a).

For this project it was decided to include solely the via point fixed constraint due to

the following reasons. An action line, as used in OpenSim is not enough to create a

polygonal representation of a musculotendon. To approximate a more accurate shape of

a musculotendon, an enhancement process was also integrated into the musculotendon

model7. The exclusion of other constraints, such as moving muscle points, gave the

geometrical model more freedom to realign each action line A within a high poly mesh.

Furthermore, no physics-driven biomechanical simulation was required for this project

and therefore no accurate force-length and force-velocity relationships were needed, i.e.

the derivative of an action line’s length was not dependent on neither forces driving each

musculotendon unit nor static optimisations. For that reason, the inclusion of fixed via

points as a way to approximate the curve of A before executing the enhancement routine

was sufficient. Finally, Rankin and Neptune (2012) states that the algorithms used for

wrapping surfaces are computationally expensive and thus computational overhead was

also reduced by excluding this type of constraint.

As briefly described in Table 3.2, via points also exhibit a limited activation range. As

a result, via points are not present all the time on A. Instead of switching via points

on and off during gait, it was opted to discard the activation range and activate all via

7Refer to section 3.5 for a thorough overview of enhancement with the UHM.

Chapter 3. The Musculoskeletal Model 18

points by default. This would not only simplify the simulation’s update loop but more

importantly set the amount of points along the action line as a constant finite set. This

brings two benefits, namely:

1. LOD techniques for the action line can be introduced now that the model uses a

fixed amount of via points.

2. Musculotendons defined as a system of spring-masses have a fixed amount of kine-

matic nodes from the get-go, which is beneficial for real-time physics engines.

The drawback is that for some intervals, there is the risk that A would not wrap around

a skeleton mesh and would instead cause penetration. However, seeing that the geomet-

rical model is represented as a simple polygonal mesh, a collision management system

would have to prevent penetration for all vertices and this would automatically solve

all wrapping issues. In addition, the ability to include LOD techniques on a constant

amount of points to adapt the surface and volume of the musculotendon brings more

accuracy to the geometrical model than not including LOD but dynamically adding and

removing points on and off of A.

With the addition of via point constraints, the model now provides finer kinematic

control over the direction of each muscle along the skeleton. Via points also approximate

the continuity of a muscle more closely than a mere line segment effectively turning each

muscle’s action line into a polyline as shown in Figure 3.8.

(a) Action line without via points. (b) Action line with via points.

Figure 3.8: Screenshots from RAGE showing the action line of one section of the
Gluteus Maximus muscle from Menegolo (2011) without via points (a) and with via
points (b). The via points, visualised as pink cubes, add extra kinematic control to the

geometrical model and better approximation to the curve of the action line.

Not all musculotendons present in Menegolo (2011) contain via points, the Gluteus

Medius, Rectus Femoris, and the Pectineus are some examples. Therefore, the least

amount of elements that can be contained in A is two for the origin and insertion points.

When via points are present in a muscle, each element v from the set V lies always

at another point on the action line in the geometrical model presented in this thesis

meaning V ⊆ A.

Chapter 3. The Musculoskeletal Model 19

3.4.2 Adding Volume with Cross Sections

The inclusion of via point constraints in the model is not enough to give each muscle

volume. At this moment, M is still a polyline defined by A. To actually add volume,

extra vertices are needed for its surface. The initial geometric state of the model, a

polygonal mesh constructed as a closed cylinder, would already include two cross sections

for the top and bottom caps. To also account for muscles that contain via points, each

closed cylinder can be split into smaller segments by introducing bisecting cross sections

at each element of A. The subset Ck containing each element of an arbitrary cross

section that is responsible for volume, of which none are on the action line, is defined

as:

Ck =
{
ck0, c

k
1, ..., c

k
n−1 | cki ∈ R3

}
, Ck (M with (3.5)

Ck ∩A = ∅. (3.6)

With Ck defined as being another proper subset of M , the relationship A (M is now

also conformed. The cardinality of Ck is also proposed as |Ck| ≥ 6 ∧ |Ck| = 2ℵ for

reasons discussed in subsection 3.5.3.2. Another area of Ck that is also worth defining

is the new direction of the up-vector for ak. This would allow the segmented cylinder to

”follow” the curve of A more closely, as shown in Figure 3.9b and 3.9c.

(a) Parallel to y (default). (b) Parallel to
(
ak+1 − ai

)T . (c) Parallel to
(
ak+1 − ak−1

)T .

Figure 3.9: Three possibilities for choosing an up-vector for bisecting cross sections.
The chosen computation is (c) which takes the up-vector (ak+1−ak−1)T as this approxi-
mation includes information from the point before and the point after the current point.
Bisecting cross sections are defined such that a ∈ A and k ∈ N with 0 < k < (|A| − 1).

The default up-vector is shown in Figure 3.9a, which in this case coincides with the −y
axis for this particular muscle, the Gluteus Maximus 3. This is because each muscle

is built starting at the origin and ending at the insertion point, and for this particular

musculotendon from Menegolo (2011), the origin point lies above the insertion point in

the y direction. Hence the direction is downwards in the−y direction given as (0,−1, 0)T .

Next is Figure 3.9b showing up-vectors pointing in the forward direction parallel to a

segment of the action line between ak+1 and ak. The last tried approach, Figure 3.9c,

Chapter 3. The Musculoskeletal Model 20

includes information from both sides of ak with the vector (ak+1 − ak−1)T resulting in

an approximation that is centralised and therefore more robust when dealing with acute

angles between two other cross sections.

3.4.3 Including Tendons into the Model

Before the model can be recognised as a musculotendon model, a geometrical representa-

tion of the tendon must be included. Unlike graphical representations of musculotendons

such as Sueda et al. (2008); Geijtenbeek et al. (2013); Teran et al. (2005); Scheepers et al.

(1997), tendons are considered as a single piece lying on one side of the musculotendon

unit in classical models such as Hill’s and Zajac’s (Zajac, 1988). However, like their

graphical counterparts most real tendons are located on each side of a muscle (Ency-

clopedia Britannica, 2014b). The biomechanical models in Menegolo (2011) include

parameters that would satisfy the equations in classical models, yet are not sufficient to

provide an accurate geometric representation for each tendon. For instance, the tendon

on the side of the origin might take 80% of the total tendon length with the remaining

20% by the tendon on the insertion side, or vice versa. Therefore, the length distribution

of each individual tendon remains unknown. In addition, the parameter tendon slack

length not only represents the total length of both tendons but also combines the length

of free and aponeurotic tendons (Delp et al., 1990), and there is no distinction as to

where the free tendon stops and the aponeurotic tendon begins. As a result, no dataset

was found for this project that included lengths for each separate tendon and for each

component of the tendon, dividing each slack length parameter into the two separate

lengths. Figure 3.10 illustrates a schematic representation of the problem.

insertion
origin

unknown mm unknown mm

unknown mm unknown mm

Free Tendon Aponeurotic TendonAponeurotic TendonAponeurotic TendonAponeurotic TendonAponeurotic TendonAponeurotic TendonAponeurotic TendonAponeurotic Tendon

Aponeurotic Tendon Free TendonAponeurotic TendonAponeurotic TendonAponeurotic TendonAponeurotic TendonAponeurotic TendonAponeurotic TendonAponeurotic TendonAponeurotic TendonAponeurotic TendonAponeurotic TendonAponeurotic TendonAponeurotic Tendon

Muscle

Figure 3.10: Classic musculotendon models such as Zajac’s (Zajac, 1988) combine all
four unknown lengths into a single term for the tendon. While accurate in biomechanics,
these unknowns make it challenging to define an anatomical three dimensional model

of a musculotendon with two individual tendons. Adapted from Hoy et al. (1990).

Without the necessary biomechanical data to calculate the correct anatomical length of

each individual tendon, it became a challenge to define a way of incorporating tendons

into the model. Although anatomically inaccurate, it was decided to implement just one

Chapter 3. The Musculoskeletal Model 21

tendon under the assumption that, at least for the lower body, most free tendon lengths

seemed to be distributed on the insertion side in anatomical illustrations such as Taylor

(2013). Hence, within this model, the length of the tendon is computed backwards,

starting at the insertion point and traversing along the action line in the direction of

the origin point for all musculotendons. To compute the tendon length, two calculations

must be preceded beforehand, which are:

1. Calculate the rest length of the musculotendon.

2. Calculate the scaled rest length of the musculotendon.

This generates a total of four separate variables for lengths, namely the length of the

action line and the length of the scaled action line, denoted by lA and lAS respectively,

the rest length denoted by lR, and finally the scaled rest length denoted by lRS . Scaled

versions of lA and lR are used in this model because the skeleton was transformed during

the semi-automatic alignment process and so were all the attachment points in order to

fit Ralph. It is also worth noting that due to the use of a simple kinematic system for

animation, the model does not include any static nor dynamic optimisation pipelines.

This fact combined with knowledge from Nordin and Frankel (2012); Benjamin et al.

(2006) that the elastin proportion is approximately 2% and maximum strain around 6%

led to the decision that tendons are assumed to be infinitely stiff in this model. The

assumption that the tendon is rigid would allow its length to be set equal to its slack

length, denoted by lTs . This opened up the possibility to adapt the implemented version

of the classical Zajac model given in Delp et al. (1990) to derive the rest length lR as

follows:

lR = lTs +
(
lFo cosα

)
(3.7)

where lFo represents the optimal fiber length and α the pennation angle present in pen-

nate musculotendons. All three parameters including the lTs were used from Menegolo

(2011). To derive the scaled rest length lRS , the ratio between the |A| in Menegolo

(2011) and the scaled |A| in OGRE must be calculated first. The generic calculation for

the |A| is given by the sum of the Euclidian length between two ak elements:

n−2∑
k=0

∣∣∣ (ak+1 − ak)T
∣∣∣ (3.8)

where the outcome can be assigned to lA or lAS depending on which state of A the

calculation was executed. Next, lRS is given by:

lRS =
lRlAS

lA
. (3.9)

Chapter 3. The Musculoskeletal Model 22

With lRS assigned, the scaled tendon slack length lTSs can also be obtained with:

lTSs =
lRSlTs
lR

. (3.10)

After the UHM enhancement, which will be discussed in section 3.5, it was found that for

most musculotendons the tendon length is longer than a noticeable free tendon length

in the high poly meshes. For the purpose of representation, it was then decided to use
1
2 l
T
s which gave visually a more correct result but still remained anatomically inaccurate.

Table 3.3 demonstrates a result with the Tibialis Anterior of the right leg.

lFo α lTs lA lAS lR lRS lTSs
1
2 l
TS
s

0.098 0.087 0.223 0.303 0.292 0.320 0.309 0.215 0.107

Table 3.3: For the Tibialis Anterior, its scaled tendon slack length lTS
s was found to

be ≈ 0.215 with half of that length being ≈ 0.107 using Equations 3.7 till 3.10. These
were computed after the skeleton was attached and aligned to fit Ralph. All values are

given in metres and rounded up to millimetres for this thesis.

Equation 3.10 is then used to determine which segment of A contains the tendon point.

Let first the function d (k) equal a length of a negative vector between two points on A:

d (k) =
∣∣∣ (ak − ak−1)T

∣∣∣ (3.11)

where k is the index iterating over A in N. Starting from the insertion point n− 1, the

travelled distance dtg along A is then computed with:

dtg =

1∑
k=n−1

d (k)

[
d (k) ≤ 1

2
lTSs

]
(3.12)

adding only the lengths where the condition d (k) ≤ 1
2 l
TS
s , contained within Iverson

brackets ‘[]’, is satisfied. To return the last index j that represents the last point before

the tendon point, a final condition is required on j:

j = k for

{
d (k) ≤ 1

2
lTSs

}
. (3.13)

To give an example, let the number of points n for a particular musculotendon be equal

to 5. During a particular computation, the condition in Equation 3.12 returned a 1

up until k = 3, consequently leaving j = 3 as well. Because of the ≤ sign present in

the condition, the tendon point in A would lie somewhere between a2 and a3. This

example is further illustrated in Figure 3.11. This figure also illustrates schematically

what was discussed previously with lack of biomechanical data prompting to implement

Chapter 3. The Musculoskeletal Model 23

a single tendon using 1
2 l
TS
s as a way to visually represent the free tendon attached on

the insertion side, but this remains anatomically inaccurate.

0 1 2 3 4
tendon point

origin
point

via points

insertion
point

1_
2lTSs

tgd

Figure 3.11: A schematic representation of the musculotendon model including a
single tendon point lying somewhere between a2 and a3.

The actual position of the tendon point tg based on 1
2 l
TS
s can now be computed using

linear interpolation between two points on A:

tg = aj−1 + s (j) with (3.14)

s (j) =

(
d (j) + dtg

)
− 1

2 l
TS
s

d (j)
(aj − aj−1)T . (3.15)

s (j) computes the ratio between scaled tendon slack length and the distance until the

point aj−1 and then scales the magnitude of the vector between aj and aj−1. The

position of aj−1 plus this outcome is used to calculate tg.

At tg, a cross section Ct is added to divide tendon and muscle. Each element of Ct

is also linearly interpolated between the previous and next cross sections as each cross

section can have different shapes. To retain the assumption that the tendon is infinitely

stiff in this model, 1
2 l
TS
s is computed only once to fix the length of the free tendon. This

is done after the skeleton is aligned and the UHM enhancement process are completed,

but prior to loading any animations, i.e. when Ralph is still in his t-pose configuration.

3.5 Geometrical Enhancement with the UHM

The Ultimate Human Model data set (UHM) is according to Snoswell (2003), ”the most

complete and accurate set of 3D models of the human musculoskeletal system that has

ever been created”. However, it is also possible that the data set is artistically tweaked

as no reference to any work is given at www.cgcharacter.com (Snoswell, 2003).

Nonetheless, it does state that its accuracy comes from anatomical texts, papers, and

custom MRI scans that went into its more than 12 man years of creation.

Chapter 3. The Musculoskeletal Model 24

The goal of using the UHM in this project is to enhance the simple cylindrical shape

of each musculotendon with detailed geometries, thereby leveraging the accuracy of the

real-time musculotendon model. The enhancement starts by preparing each mesh for

import into RAGE, where they will be attached to their equivalent musculotendon of

OpenSim8. Once the UHM meshes are all attached and oriented in the right configura-

tion, the enhancement process discussed in subsection 3.5.3, can commence. The first

step, mesh preparation, is discussed in the following subsection.

3.5.1 Preparing the UHM Meshes

Because the musculotendon model should stay simple and volumetric for future volume

discretisation techniques, it was required to adapt certain meshes of the UHM. Lee

et al. (2009) confirms this adaptation by stating that the UHM meshes are not well

conditioned for a physics-based simulator and report aspect ratios for elements as high

as 60:1 and edge length ratios between 1000:1. Certain meshes also exhibit open areas,

which could pose problems for volume discretisation techniques as no closed surface can

be defined. Thus, similarly to Lee et al. (2009), holes present in meshes representing

musculotendons needed to be closed. For this project, this was accomplished using the

3D authoring software Blender Foundation (2006). One example is shown in Figure

3.12.

(a) Right Soleus represented as an open mesh. (b) Right Soleus represented as a closed mesh.

Figure 3.12: Comparison between an open and closed UHM mesh of the Soleus.
The large open area on the front is due to Gastrocnemius and Calcaneal that were
occupying that space. The final result, shown in (b), was manually processed using

Blender (Blender Foundation, 2006).

8Appendix D shows the final result of the mapping process.

Chapter 3. The Musculoskeletal Model 25

Furthermore, some meshes would exhibit self-intersections and these would give incorrect

results after the enhancement process was completed for reasons discussed in subsection

3.5.3. To ameliorate potential risk areas, vertices that were positioned on opposite sides

were repositioned so as to keep the polygonal UHM mesh penetration free. An example

is given in Figure 3.13.

(a) Self-intersection of one vertex (top). (b) Corrected mesh without self-intersections.

Figure 3.13: Self-intersection issues with the UHM meshes such as the Iliotibial Band.
The corrected result, shown in (b) was manually processed using Blender.

Finally, some UHM meshes were combined to fit a single musculotendon unit in Open-

Sim, while others where divided for cases where OpenSim represents single musculoten-

dons with multiple action lines, such as the Gluteus muscles that are characterised with

broad attachment sites (Blemker and Delp, 2005). Figure 3.14 shows one example for

the divided Gluteus Maximus processed in Blender. A complete list, overviewing both

divided and combined the UHM meshes, is given in Appendix D.

Figure 3.14: An example of the Gluteus Maximus divided (or cut) in Blender for
cases where OpenSim uses multiple action lines due to large attachment sites.

Chapter 3. The Musculoskeletal Model 26

3.5.2 The UHM Mesh Shape Analysis

With the inclusion of the UHM meshes for the lower body, a more accurate representation

could now be achieved for each musculotendons’ custom shape. As musculotendons have

different architectures, and each musculotendon has its own unique anatomical shape, a

dilemma arose as to what modelled shape would cover the most space contained within

each UHM mesh.

To address the above dilemma, it was decided to make a small analysis of each high poly

mesh borrowed from the UHM. As an input source for the analysis, three slices from each

processed mesh were sampled at approximately first quarter, half way, and third quarter

lengths, each orthogonal to the longitudinal axis of each musculotendon. To get an idea

for what kind of shapes the high poly meshes would consists of, its isoperimetric quotient

is calculated and convex-concave tests are performed on each slice. The isoperimetric

quotient, denoted by q, is used to calculate the ratio between the area a of an arbitrary

slice USk and the area of a circle with the same perimeter p as USk . It is calculated as:

q =
4πa

(
USk

)
p (USk)2

. (3.16)

Convex-concave tests were then calculated by first sorting the edge list of USk using a

method described in Appendix E. After the edges were sorted in a cyclic manner, the

z component of the cross product was used to determine whether the simple polygons

represented by USk were convex or concave. The computation starts first by aligning

all slices in the same XY plane. For each vertex ui of USk with coordinates uxi , uyi , and

uzi = 0, the following calculation is performed:

Zi =


(
uxi+1 − uxi

) (
uyi+2 − u

y
i+1

)
−
(
uyi+1 − u

y
i

) (
uxi+2 − uxi+1

)
if 0 ≤ i < (n− 2)(

uxi+1 − uxi
) (
uy0 − u

y
i+1

)
−
(
uyi+1 − u

y
i

) (
ux0 − uxi+1

)
if i = (n− 2)

(ux0 − uxi) (uy1 − u
y
0)− (uy0 − u

y
i) (ux1 − ux0) if i = (n− 1)

(3.17)

with i denoting a zero-based index in N,n equals the number of vertices in USk , and

Z representing the z component of the cross product. If all Zi’s have the same sign,

i.e. they are all either positive or negative, then no angle has surpassed the [0◦, 180◦] or

[−180◦, 0◦] thresholds. In this case the simple polygon is considered convex, otherwise

it is considered concave. Figures 3.15a and 3.15b shows the results of the analysis9.

9It is worth noting that the area of each slice was normalised to 1, making it possible to overlay each
slice on top of each other to get the composited image render shown in Figure 3.15b.

Chapter 3. The Musculoskeletal Model 27

3

4

5

6

7

8

9

10

11

12

0 0.2 0.4 0.6 0.8 1.0

Pe
rim

et
er

s w
ith

 n
or

m
al

is
ed

 a
re

a
(1

m
)

Isoperimetric Quotient (q)

Concave

Convex

(a) Plot of perimeters versus isoperimetric quotients. (b) Top-view of 72 slices from 24 UHM meshes overlaid.

Figure 3.15: Two results from the analysis of 72 slices taken from 24 UHM meshes
for the lower body. (a) shows a plot where for each slice its isoperimetric quotient was
calculated from its perimeter with a normalised area. (b) shows overlaid renders, also
from 72 slices with normalised areas. Each slice was centred around their centroid and
positioned on the same plane. The composite image was blended with the difference
mode in inverted RGB colours in order to highlight intersections between slices. All

UHM meshes that were used in this analysis are given in Appendix D.

Apparent from Figure 3.15a is that there are more concave than convex slices, but as

the normalised perimeter gets smaller, there appears to be more convex slices, with

convexity increasing for q > 0.6. Furthermore, 75% (or 54) of the 72 slices are more

inclined towards circular than elongated shapes, i.e. when q > 0.5. Finally, the result

also indicates that there is a concentration of shapes with an isoperimetric quotient

around 60%. This can be inferred from the difference of 1% between the median and

arithmetic mean of q (Figure 3.15b) that presumes a symmetrical distribution for the

72 slices that were sampled from 24 UHM meshes for the lower body.

Although the results of the analysis show circular tendencies, there are also highly

concave slices, as shown in Figure 3.15b (bottom left). This poses a problem for real-

time musculotendon models, as more vertices are required to approximate concave than

convex shapes. Nonetheless, by taking the circular tendencies and real-time performance

into consideration, it was decided to approximate the high poly geometry by trying to

reposition each element of Ck at the surface of its corresponding UHM mesh. This

is accomplished with ray-triangle intersection tests described in the next subsection

with the goal of having Ck remaining as a simple polygonal representation of its high

poly counterpart. In addition, if the real-time model requires better approximation, it

would be possible to increase the amount of elements in Ck before casting rays for the

intersection tests with the UHM.

Chapter 3. The Musculoskeletal Model 28

3.5.3 A Technique for Musculotendon Enhancement

The general idea for enhancing the musculotendon model is illustrated in Figure 3.16.

It starts by scaling the UHM mesh so that the attachment points of the cylinder-based

musculotendon are corresponding to similar areas within the high poly mesh. Each mesh

is then oriented to face its right direction during t-pose. Next, for each surface vertex,

or each element of an arbitrary cross section Ck, rays are shot in the normal direction

to search for intersections with the high poly mesh. Once intersection points are found,

each element of Ck is translated towards each intersection point along the direction of

the ray. The intersection tests can be repeated a couple of times in order to determine

whether elements of A should also be repositioned at a new inner point of a cross section

(or slice) of an UHM mesh. This is further discussed in subsection 3.5.3.2.

(a) Cylinder-based musculotendon with via points. (b) High poly mesh aligned between origin and insertion.

(c) Rays in normal direction intersecting high poly mesh. (d) Final enhanced musculotendon.

Figure 3.16: General idea for enhancing the musculotendon model with a high poly
reference mesh with the help of ray-triangle intersection tests, in the order of (a) to (d).

Chapter 3. The Musculoskeletal Model 29

It was chosen to use the fast ray-triangle intersection algorithm of Möller-Trumbore

(Möller and Trumbore, 1997), instead of contour hull algorithms such as Gurram et al.

(2007) and Duckham et al. (2008) as both the UHM meshes and cylindrical musculoten-

dons are configured differently with respect to the amount of vertices and with respect

to the three-dimensional position and orientation of their vertices.

3.5.3.1 Repositioning C’s on the Surface of U

Generally speaking, an element cki for an arbitrary Ck is repositioned when an intersec-

tion point pi is found between a surface triangle of an UHM mesh U and a ray that has

been cast from cki . For each ck, rays are cast in two normal directions on the plane of ev-

ery Ck, namely positive and negative. With the positive direction being the normalised

vector ̂(cki − ak)T and the negative direction being the normalised vector ̂(ak − cki)T . In

addition, each surface triangle of U that intersects this plane creates a Jordan curve,

denoted as UCk , in the same plane as Ck. The ray-triangle intersection tests are used

to find three possible outcomes, which is when:

1. UCk lies completely outside of Ck in the plane containing Ck.

2. UCk lies completely inside of Ck in the plane containing Ck.

3. UCk lies partly outside of Ck in the plane containing Ck.

The technique incorporated two additional preferences to cope with the two sides of each

triangle’s face, i.e. when an intersected triangle was either back or front-faced. The first

preference is for choosing intersections found through rays being cast in the positive

direction P above the negative direction N , shown schematically in Figure 3.17.

ak
p

N

N 0 p
N

N

1
p

P 2p P
5

p

N

3p
N

4

ak
p

N

0 p
N

1

p
N

4

pN
5 p

N2

p

N

3

Figure 3.17: Showing ray-triangle intersection outcome number three (left) and out-
come number two (right). UCk is represented by the green shapes and pi’s denote
intersection points. pi’s can be found with a ray cast in the positive direction P or in
the negative direction N . The left figure shows that here N of p5 equals p2 and N of p2
equals p5, illustrated with the light-red line segment. The figure on the right illustrates

a case where no P -points were found, and instead resorted to finding N -points.

Chapter 3. The Musculoskeletal Model 30

The second preference is that for P , the furthest pi of each back-face triangle is returned,

while for N the closest pi of each front-face triangle is returned, shown in Figure 3.18.

The combination of these two preferences allows each cki to find its corresponding pi.

ak
cik

p
P

i

ak
cik

p

N

i

Figure 3.18: Schematic figures showing outcome one and highlighting the second
preference: If more than one pi is found for P , choose the furthest back-face triangle.
Conversely, if more than one pi is found for N , choose the closest front-face triangle.

3.5.3.2 Repositioning Elements of A within the Volume of U

Ck’s are constructed with algebraic radii, denoted by the set Rk, between elements of

Ck and corresponding elements ak of A10. Each radius rki is obtained with
∣∣∣ (cki − ak)T ∣∣∣

or
∣∣∣ (ak − cki)T ∣∣∣. Using radii proved to be versatile as it allowed Ck to have an initial

shape that was useful for the intersection tests and allowed each deformation to be kept

in memory by storing distances as radii. This brought the benefit that a point within

UCk could be determined by checking which radii have been updated and consequently

iterate the process discussed previously to achieve a better approximation for each UCk .

To explain the approximation process visually, a key example is introduced that will

be used throughout the remaining subsections. The example uses the index k = 1 in

the longitudinal direction where UC1 turns out to be a closed concave shape positioned

outside of C1 and is schematically illustrated in Figure 3.19. The illustration shows the

end result indicating why locating a point within UCk (an inner point) is necessary as the

result equals a false representation with the deformed hexagon being complex instead of

simple.

Match Detection First comes the task of detecting a match between two algebraic

radii that have been updated. A match is denoted by ek and is defined as an ordered

pair of indices (i+, i−) that correspond to an index i of p where its distance is established

with either a positive or negative algebraic radius for two opposing elements of Ck.

In this respect, the or-relationship is exclusive and imposes the following condition:

One of the two opposing algebraic radii has a negative sign.

10For a more detailed description of this process, refer to section 3.7.

Chapter 3. The Musculoskeletal Model 31

c01

c11

c21
c31c0o1

c41
c1o1

c51c21o
r01

r11

r21

r31

r41

r51

a1
C1

UC1

d01

d11

d21

o

d31d0
1o

d41 d1
1o

d51
d21

D1

p0

p1

p2

p3

p4

p5

Figure 3.19: Showing a key example with a concave slice of an UHM mesh, denoted
as UC1 . Applying the preferences and conditions discussed previously results in the
complex polygon D1, which is a false representation due to a1 being positioned outside

of the targeted cross section UC1 .

In order for a pair of cast rays to be considered equal, for instance c11 and c14 in Figure

3.19, it is important that both c1’s are symmetrical counterparts with respect to a1, i.e.

opposites. This is ensured by requiring that the cardinality for every Ck is always even

and never odd, which is the case here for the current example that uses six vertices,

i.e. a hexagon. From this example it is also visible that for every Ck with |Ck| ∈ 2ℵ
and |Ck| = 6, the maximum amount of matches would be always equal to 1

2 |Ck| thereby

reducing the amount of match-lookups to half. Hence, each opposing element of cki can

be deduced by taking the opposing index io with:

io = i+
1

2
|Ck| where

{
i ∈ N

∣∣∣∣ i < 1

2
|Ck|

}
. (3.18)

Each detected match helps to determine when a ray passed a centre point ak as this

suggests the possibility that UCk lies somewhere (at least partly) outside of Ck. Because

each surface vertex or cki is drawn by computing its radius, a ray that surpassed ak

in the negative direction N needs a negative algebraic radius to correctly represent the

intersection point’s mirrored position. This is accomplished with the following condition:∣∣∣ (pi − cki)T ∣∣∣> rki . In this case, a negative sign is added to update the radius with the

following new result: −
∣∣∣ (pi − ak)T

∣∣∣. In all other cases, the radius remains positive.

In the current example, radii r13, r14, and r15 become negative, depicted with orange line

segments in Figure 3.19 and overlapping the positive radii r10, r11, and r12 lying in the

same direction.

Chapter 3. The Musculoskeletal Model 32

Permuting Matches Once all matches are detected, they are stored in a single

container, denoted by the set Ek with |Ek| ≤ 1
2 |Dk|, and where Dk represents a deformed

cross section at index k. Permuting the elements of Ek is necessary for the solution to

locate an inner point that is discussed in the next paragraph. Visually, the result of the

permutation on Ek is a sequence of matches so that the first term
(
0, ek0

)
represents a

match at one end of UCk , winding through the continuity of the shape, and reaching the

final term
(
n− 1, ekn − 1

)
at the other end of UCk ; given that the amount of elements

is greater than one. Because relative spatial configurations of UCk with respect to Ck

have many possibilities, the intersections tests will not necessarily return a sequence of

matches in an ordered fashion when the tests always start at ck0. One example is when

UCk is intersected by rays cast from elements ck5 and ck0. The example given in Figure

3.20 illustrates that when starting the search at c10, the elements of E1 would contain

the same set of matches. Thus without taking the sign of each algebraic radius into

consideration, there is no easy way of determining whether the first match starts with

the rays cast initially through c10 or through c15.

c01

c11

c21c31

c41

c51

a1
C1

e01

e11

e21
E1 = {e , e , e }0 1 2

1 1 1

UC1 UC1

c01

c11

c21c31

c41

c51

a1
C1

e01

e11

e21

E1 = {e , e , e }0 1 2
1 1 1

Figure 3.20: Schematic figure showing the same set E1 with matches detected in the
same order but for two different shape configurations, prompting the need to track if a

c1i was repositioned to d1i with a positive or negative algebraic radius.

By filtering the type of intersection that produced either a positive or negative algebraic

radius, the elements of Ek can be rearranged so that the search winds correctly, similar

to the concept of chain codes. Searching with index i = 0 up until i = 1
2 |Dk| − 1, a sign

of the computed radius for all dki is chosen. If the new position dki was established with

a negative algebraic radius, then its opposing element dkio is chosen such that this would

contain the correct point, i.e. i+ = io. This example is further elaborated in Table 3.4

that shows all possible permutations with i+ using the same configuration as previous

examples with UCk lying outside and intersected by three pairs of rays cast from Ck

with |Ck| = 6. Note that only half of the points of Dk (or 1
2 |Dk|) have to be searched to

get all six permutations.

Chapter 3. The Musculoskeletal Model 33

Sign of r for
(
dk0, d

k
1, d

k
2

)
Permutation with i+ of dki Rearranged matches

f : (+ + +)→
(
dk0, d

k
1, d

k
2

)
σ (0, 1, 2) = (0, 1, 2) 〈ek0, ek1, ek2〉

f : (+ + −)→
(
dk0, d

k
1, d

k
2o
)

σ (0, 1, 5) = (5, 0, 1) 〈ek2, ek0, ek1〉
f : (+ − −)→

(
dk0, d

k
1o , d

k
2o
)

σ (0, 4, 5) = (4, 5, 0) 〈ek1, ek2, ek0〉
f : (− − −)→

(
dk0o , d

k
1o , d

k
2o
)

σ (3, 4, 5) = (3, 4, 5) 〈ek0, ek1, ek2〉
f : (− − +)→

(
dk0o , d

k
1o , d

k
2

)
σ (3, 4, 2) = (2, 3, 4) 〈ek2, ek0, ek1〉

f : (− + +)→
(
dk0o , d

k
1, d

k
2

)
σ (3, 1, 2) = (1, 2, 3) 〈ek1, ek2, ek0〉

Table 3.4: Taking the sign of r into consideration allows Ek to be rearranged.

With the example given in Table 3.4, the actual permutation σ computed on indices of

Ek (visible in the middle column) is given in pseudo-code with Algorithm 1.

input : A set Ek containing ordered pairs of matches (i+, i−).
output: A sequence 〈ekn〉 with a range of

{
ekn : 0 ≤ n < |Ek|

}
.

1 if |Ek| > 1 then

2 Ek ← SortAscending(Ek); // sort numerically from low-high

3 〈etempn 〉 ← Ek;

4 temp match←
{
ek0
}

;

5 mindex← ek01
; // note that ekn1

represents i+ for every
{
ekn
}

6 nshifts← 0; // index where to insert new term in 〈etempn 〉
7 for m← 1 to |Ek| − 1 do
8 if

(
ekm1
−mindex

)
6= 1 then

9 temp match←
{
ekm
}

;

10 〈etempn 〉 ← 〈etempn 〉 − (m, etempm);

11 〈etempn 〉 ← 〈etempn 〉+ (nshifts, temp match);
12 nshifts← nshifts+ 1;

13 end
14 mindex← temp match1;

15 end

16 〈ekn〉 ← 〈e
temp
n 〉;

17 end

Algorithm 1: Permutation σ given in pseudo-code that returns EK containing
a sequence of matches winding through from one end till the other end of UCk .

σ can also be used to calculate the area and consequently the centroid (or centre of

gravity) with equations given in Appendix F. It is worth pointing out however that the

centroid is not suitable for this application, as not always its derivation will result in a

point located within UCk , e.g. in boomerang like shapes.

Determining an Interior ”Inner” Point As discussed previously, when ak lies

inside of UCk , the amount of false positives is presumed to be less thereby reducing

Chapter 3. The Musculoskeletal Model 34

the initial problem illustrated in Figure 3.19. Each detected match therefore suggests

the possibility of Dk resulting into a complex shape, which should not be the case as

polygonal meshes suited for deformation should remain simple. To determine an inner

point, a heuristic is used on the number of matches, dividing them into even and odd

after being permuted by σ. When odd, the mid point of the middle match is taken as

the inner point where ak should be repositioned. When even, a single match cannot be

determined, thus a more complicated approach is used. Here, the two middle matches

are taken that collectively form a quadrilateral. Each vertex of this quadrilateral is

then projected into two dimensional space, where its centroid can be calculated using

the method of Patterson (2003). The method of Patterson (2003) requires an intersec-

tion test for two line segments between pairs of centroids of each of the four triangles

present in every quadrilateral. This intersection point is computed using the method

of Goldman (1990) and represents the centroid of the quadrilateral. Thus, this point is

the inner point where ak has to be translated to. Figure 3.21 shows three examples for

different dimensions (or cardinality) of Ck with Figure 3.21c illustrating an example for

the centroid approximation of a middle quadrilateral.11.

(a) Midpoint of medial match (uneven) (b) Same as (a) for a Dodecagon (c) Even results take the centroid of a quad

c01

c11

c21c31

c41

c51

a1
a1innerC1

UC1

c01
c11
c21

c31
c41c51c61

c71
c8

1

c81
c91
c101
c111

a1

C1

a1inner

C1

a1
a1inner

Figure 3.21: An example illustrating two types of inner point determination. (a)
shows the inner point determined by the midpoint of the middle match for an uneven
number of matches. (b) shows the same situation for a Dodecagon. (c) shows the

resulting centroid determined with an even number of matches for a Tetradecagon.

3.5.4 Iterating the Enhancement Process

With ak now repositioned to aCentroidk , the enhancement process can be repeated in order

to get a simple and more accurate polygonal representation of UCk , given in Algorithm

2. It is also worth mentioning that Line 14 and Line 15 were included to give preference

to the attachment positions of OpenSim instead of the UHM. So that even after the

origin and insertion points have been repositioned, they will still go back to their initial

OpenSim locations.

11Refer to section 3.6 for more information on scaling the dimension of Ck.

Chapter 3. The Musculoskeletal Model 35

1 foreach M do
2 k ← 0;
3 for k ← 0 to k = |A| − 1 do

4 Ck ←SetRadii(Ck); // initial configuration
5 ComputeRayTriangleTests(Ck);
6 Dk ←UpdateRadii(Ck);
7 Ek ← DetectMatches(Dk);

8 〈ekn〉 ← σ;

9 ak ← ComputeInnerPoint(〈ekn〉);
10 Ck ←ResetRadii(Dk);
11 ComputeRayTriangleTests(Ck);
12 Dk ←UpdateRadii(Ck);

13 end
14 a0 ←ResetActionPoint(a0); // origin position
15 a|A|−1 ←ResetActionPoint(a|A|−1); // insertion position

16 end

Algorithm 2: The order of steps executed during the UHM enhancement process.

3.6 Adapting the LOD of the Musculotendon Model

Most musculotendons in Menegolo (2011) contain zero via points with the Sartorius hav-

ing a maximum of three via points. This creates a problem for leveraging the accuracy

during the enhancement process discussed in subsection 3.5.3 as not much information

is present in the latitudinal and longitudinal dimension, i.e. the amount of detail for

each Ck’s at every ak of A. To solve this problem, it was decided to adapt the muscu-

lotendon model to be scalable in both longitudinal and latitudinal dimensions, thereby

introduction a LOD technique. Allowing the LOD to be adapted in both directions

also satisfied the requirement to simulate a more accurate model in real-time on faster

computer hardware.

3.6.1 Longitudinal and Latitudinal Scaling

As discussed in subsection 3.4.2, musculotendons where via points are present can be split

into smaller segments by introducing extra bisecting cross sections that lie orthogonal to

the vector (ak+1 − ak−1)T for a ∈ A ∧ 0 < k < (|A| − 1). For the longitudinal segment

scalar (LSS) it was decided to look at the amount of extra segments instead of cross

sections. A segment is defined as the volume between two cross sections, when LSS = 0

this would equal one segment, when LSS = 1 this would equal two segments, LSS = 2

equals four segments, and so forth. The reasoning is that when a cross section is added it

actually splits an existing segment into two, hence when this splitting pattern is repeated

the resulting expression would be in the form of 2n. Furthermore, each newly created

Chapter 3. The Musculoskeletal Model 36

ak is added at exactly the mid point between the two opposing cross sections on each

side. This allows the dimension of A to scale in a uniform fashion. The same repeating

pattern is applied as well to via points, as each via point also splits an existing segment

into two. Adding everything together results in the following equation to calculate the

target cardinality in the longitudinal dimension, given as:

tLON = 2LSS (|V |+ 1) + 1 with LSS ∈ N (3.19)

The musculotendon model can also scale in the latitudinal dimension, denoted by tLAT,

with the amount of vertices at each cross section falling within the range of |Ck| ≥
6∧ |Ck| = 2ℵ. This is used to locate inner points as discussed previously. A copy of M ,

denoted as Mcopy, is taken where the latitudinal dimension is scaled to a high enough

value so that every ak of Mcopy gets repositioned inside the volume of an UHM mesh

U . Once the enhanced process is finished, the repositioned ak are copied back into the

original container where ray-triangle intersections tests are executed again to get the

final approximated shapes. This is done by introducing a scalar, the cross sectional

scalar, denoted as CSS to differentiate between latitudinal scales and is used as:

tLAT = CSS |Ck| with CSS ∈ N. (3.20)

There is also a lower bound on Ck’s cardinality for reasons discussed in the next subsec-

tion.

3.6.2 Hexagons as a Lower Bound for Ck

With the ability to scale the amount of elements in Ck, as explained in subsection

3.6.1, it would be also beneficial to establish a lower bound for the cardinality of Ck.

This limit would define the lowest amount of geometrical information that is reasonably

achievable for the real-time simulation. The lower bound was chosen to be six for every

Ck instead of the remaining three polygons with lesser sides, illustrated in Figure 3.22.

Using hexagons as the lower bound for |Ck| brings forth two advantages:

1. As with all polygons with even Schl̊afli numbers, hexagons have the property of

being reflectively symmetric. This comes in handy for the pairwise ray-triangle

intersection tests when determining whether a hexagonal-plane needs to be trans-

lated into the volume of another target musculotendon geometry with higher res-

olution12. Thereby excluding pentagons and triangles as possible candidates for a

lower bound.

12An in-depth discussion on the pairwise ray-triangle intersection tests is given in subsection 3.5.3

Chapter 3. The Musculoskeletal Model 37

≈2.17

(a) inscribed hexagon

≈2.66

(b) inscribed pentagon

≈4.73

(c) inscribed quadrilateral

≈7.32

(d) inscribed triangle

≈2.35

(e) inscribed hexagon

≈3.06

(f) inscribed pentagon

≈4.60

(g) inscribed quadrilateral

≈7.43

(h) inscribed triangle

Figure 3.22: Illustration of areas covered by polygons with Schl̊afli numbers between
{6} and {3} inscribed in conic sections. Both the circle and ellipse have the same area.
Clearly, both regular and irregular hexagons have a better perimeter to area ratio.
The calculation of each covered area is the subtraction of standard area equations for
these polygons from the area of the circle or ellipse. The approximated solution to each
problem is given in the lower right corner where a lower value indicates better coverage.

2. Second, even though musculotendons consist of different architectures, the anal-

ysis in subsection 3.5.2 indicates that anatomical shapes of musculotendons have

circular tendencies13. Thus, a cross section of a musculotendon unit could be con-

sidered as a closed curve that deviates from an idealised conic section14. Because

hexagons have a higher perimeter to area ratio than quadrilaterals, hexagons are

thus more fitting to a model with circular tendencies compared to quadrilaterals.

3. Hexagons have a lower amount of vertices than octagons, and because the three

polygons with lesser sides are already excluded, the remaining option is the hexagon.

3.7 Drawing the Cylinder-based Musculotendon Unit

Drawing M in each time step comprises of a couple of steps outlined in Figure 3.23a.

Each M is defined in its own internal coordinate system based on the world position

of the bone parented to the origin point. The first routine computes local positions of

A as illustrated in Figure 3.23b. Afterwards, Ck is computed with all radii from the

set Rk. Similar to the internal coordinate system used for the relative positions of ak,

the directions of rki are also computed in intervals relative to angle θ, given as 1
|Ck|360◦.

Next, one tendon point is interpolated and stored separately as at and Ct. Finally, the

muscle is drawn, shaded, and textured using OGRE.

13A circle is also one of the most common shapes found in nature (Whitaker, 2006).
14Except for aponeuroses, which are flat and broad tendons. These are not included in biomechanical

models as discussed in subsection 3.4.3 and thus were considered beyond scope.

Chapter 3. The Musculoskeletal Model 38

(a) Steps involved prior the drawing routine.

p+q
p

q

vW0

vW1

bW61

bW62

(b) Example showing the internal coordinate system.

Figure 3.23: (a) shows the order of steps before drawing each musculotendon in
OGRE. In (b), an example is given with two via points where the second via point vR1
(in internal coordinates) is derived with the help of p. For each constraint, a vector
is taken between the world position of an attachment point and the parented bone of

the origin point. In this example, q =
(
vW0 − bW61

)T
and p+ q =

(
vW1 − bW61

)T
therefore

p = p+ q − q and so the relative position vR1 can be derived with vR0 + p.

For the actual drawing routine, it was opted to use the Ogre::ManualObject class as

it provides wrapper functions for the creation of custom objects. To prevent performance

hits, each M is created once with the inclusion of extra vertices for the tendon point and

is afterwards updated with new positions in subsequent time intervals, ensuring that

GPU memory is allocated once, with pre-calculated vertex and index buffers.

3.7.1 Triangle Fans and Triangle Strips

Instead of using triangle lists, it was opted for a combination of fans and strips, illustrated

in Figure 3.24. These render types give less vertex redundancy with each needing just

n+2 vertices to draw n triangles. Coupling fans and strips with vertex and index buffers

results in an efficient way to draw the graphical musculotendon in real-time.

3.7.2 Applying Textures

The final addition to the musculotendon model was a visual aid to inspect the length

of tendons derived with the linear interpolation function discussed in subsection 3.4.3.

Adding textures proved to be a practical way to solve this issue and moreover it increased

the visual realism of the model. Some examples are given in Figure 3.25.

Chapter 3. The Musculoskeletal Model 39

Top Cap

Bottom Cap

CT C3 C4

C2

C1

C0

a0

Triangle
Fan

Triangle
Fan

Triangle Strips
0

Figure 3.24: Showing the cylinder-based musculotendon with triangle fans and strips.

Figure 3.25: The top rows shows interpolated tendons up close, while the bottom row
shows a back and front view of the lower body model that is embedded within Ralph.

Chapter 4

Real-Time Collision Detection

and Response

The spatial arrangement of musculotendons is considered problematic as they are grouped

and intertwined with the skeleton, with themselves, and in tight spaces. A recent sur-

vey from Lee et al. (2010) mentions that solving collisions would provide a significant

advancement in the area of musculoskeletal simulation. Indeed, a collision-free system

would for example allow volumetric models to be used with the finite element method

(FEM). This project tried to look for a solution using different techniques, but in the

end resorted to a custom strategy that tries to isolate the problem of collision detection

and response.

To solve collisions, the relatively fast GJK-EPA algorithm (Cameron, 1997) that is taken

for granted in most real-time contact problems could not directly be used in this case due

to the concavity inherit within the musculoskeletal anatomy. An attempt was therefore

made with Bullet Physics (Coumans, 2013) by representing each musculotendon as a

soft body comprising of spring-masses. Unfortunately, this turned out to be impossible

to model muscle behaviour. The addition of extra links to reduce bending and preserve

volume did not solve the issue either and hinted at possibly reaching a limit for the stiff

equations that are used by Bullet’s integrator, or lack of knowledge and experience from

the author. The second issue was a exceedingly low amount of frames per second (FPS)

even when using collision groups and masks for all bodies, and hierarchical approximate

convex decomposition (HACD) for the rigid skeleton bodies (Mamou, 2013). One other

option was to represent each musculotendon as a chain of connected rigid cross sections.

However, this would create other issues such as not being able to deform cross sections

and missing collisions within the inner segments, due to the thinness of the plate like

cross sections.

40

Chapter 4. Collision Detection and Response 41

4.1 Custom Strategy for Discrete Collision Detection

The above mentioned problems hint at the complex arrangements within components of

the musculoskeletal system that are not suitable for the standard methods and techniques

within the field of real-time collision detection, such as sweep and prune and spatial

partitioning. Besides the presumption that most anatomical objects are concave, there

are interdependencies for contacts between skeletal muscle, skeletal bone, and between

fat and adipose tissues. Even in a simplified model that uses just skeletal muscle and

bone, collisions would occur between the muscles and the skeleton, within the same

muscle, between different muscles, and also between different bones of the skeleton, all

influenced by and depending on a certain pose of a particular animated character. With

such a high degree of outcomes for colliding objects, it made sense to isolate the problem

of collision detection for this specific problem-type and introduce a new pairwise collision

constraint suitable for both low and high poly musculotendon models.

4.1.1 Collision Constraints for Muscle and Skeleton

Besides having a penetration free state, muscles should follow a path from origin to

insertion, passing around other muscles and other skeletal bones. The musculotendon

model discussed in this thesis uses via-points from OpenSim and approximated inner

points of the Ultimate Human Model (UHM) to create a more accurate path1. However,

these additions alone do not guarantee a convergence to a penetration free state, espe-

cially when coupled with an animation sequence that wraps, bends, twists, and stretches

musculotendons.

To try to solve this problem, a new constraint denoted by κ is introduced that forms

a transversal line segment between two cross sections of two arbitrary musculotendons.

Each constraint would connect a vertex of a tagged cross sectional plane Ck ∈Mx with

another vertex of another tagged cross sectional plane Ck ∈ My. The aim is to try to

solve two problems in real-time collision detection within this domain, namely:

1. Finding a correct location of Mx with respect to My.

2. Reducing the amount of discrete collision checks.

A constraint κ consists of two tagged cki ’s, denoted as κx and κy, from two separate

musculotendon meshes. Geometrically, each κ represents a transversal with two alternate

interior angles φx and φy, shown in Figure 4.1 that vary with the orientation of each cross

1OpenSim uses similar constraints such as wrapping surfaces, discussed in 3.4.1, however these are
aimed at approximating empirical data more closely for a polyline representation of the action line.

Chapter 4. Collision Detection and Response 42

section. When either of the two angles are acute, the solver uses the scalar projection of(
κyk − c

k
i

)T
unto

(
ak − cki

)T
as the penetration depth ρx, or

(
κxk − cki

)T
unto

(
ak − cki

)T
as the penetration depth ρy. If both angles are acute, the sum of both depths is taken.

ak ck1
oxMx

ak
c4k

oy

My

(a) A potential collision is detected.

ak
c4k

oy

My

ak ck1
ox

Mx

(b) No collision is detected.

Figure 4.1: A transversal constraint κ consisting of two tags, ck1 of Mx and ck4 of My.
(a) illustrates one acute angle φy with the penetration depth ρy (marked in blue). The
penetration depth is used to determine whether ak of My should move in the opposite

direction
(
ckio − ak

)T
by distance ρy. Due to the symmetry of even dimensions for |Ck|,

the opposite index denoted by io can be found. (b) illustrates a case where no acute
angles are present on either side of κ, thus indicating a possible collision-free state.

ρ is then used as the distance to determine whether either ak should be moved in

the opposite direction
(
ckio − ak

)T
, depending on which reference frame the solver is

computing from2. Using the example of Figure 4.1a, if a user-defined tag places My

as its frame of reference, then for this particular κy the solver is instructed to check if

the constrained cross section centred at ak should move in the opposite direction given

by
(
ck1 − ak

)T
with a tag being placed on ck4, of My. In addition, tagged cki ’s are used

to instruct the solver to let all elements of Ck be checked for collisions against specific

skeleton meshes, and not just other muscles.

4.1.2 Discrete Collision Detection with Ray Casting

A transversal constraint alone does not guarantee a penetration free state as it depends

too much on where manual tags are placed, and when leading with low scale geometries

this does not provide sufficient robustness. Hereto, they are only used to check if a cross

section should be moved or not. To increase the accuracy of the discrete collision solver,

ray-triangle intersection tests are carried out with the same Möller-Trumbore algorithm

2Opposing indices denoted by io are found with Equation 3.18.

Chapter 4. Collision Detection and Response 43

(Möller and Trumbore, 1997) that was used for the UHM enhancement process3. Al-

though all triangles of a tested object could be taken into account during narrow phase

detection, the amount of rays being cast was limited in this implementation to the

amount of constraints placed on the object. This results in less computations, except

when checking for collisions between muscle and skeletal bones as each face of a skeleton

mesh has to be tested. Each intersection test starts at a Ck of a tagged cki where rays

are cast from each cki in one sweep consisting of two different directions, illustrated in

Figure 4.2.

ak
ck1

ck2ck3

ck4

ck5 ck0

(a) Latitudinal Sweep.

ak

ak-1

ak+1

Ck

Ck-1

Ck+1

k

k-1

k+1

(b) Diagonal Sweep.

Figure 4.2: Direction of cast rays confined by transversal constraints.

At each cki rays are cast in the latitudinal and diagonal normal directions with:

Dlat (i, k) =


∣∣∣ cki+1 − cki

∣∣∣ if i < |Ck| − 1∣∣∣ ck0 − cki ∣∣∣ if i = |Ck| − 1
(4.1)

DdiagP (i, k) =


∣∣∣ ck+1

i+1 − cki
∣∣∣ if i < |Ck| − 1 ∧ k < |A| − 1∣∣∣ ck+1

0 − cki
∣∣∣ if i = |Ck| − 1 ∧ k < |A| − 1

(4.2)

DdiagN (i, k) =


∣∣∣ ck−1i+1 − cki

∣∣∣ if i < |Ck| − 1 ∧ k = |A| − 1∣∣∣ ck−10 − cki
∣∣∣ if i = |Ck| − 1 ∧ k = |A| − 1

(4.3)

where Dlat is the normal direction of the cast ray around Ck in the latitudinal direction,

and DdiagP and DdiagN represent the positive diagonal and negative diagonal directions

respectively4. The presumption here is that extra rays tests would lower the chances

3Refer to subsection 3.5.3 for how these tests were used during the UHM enhancement process.
4Note that Equation 4.3 is only used for cases when k = |A| − 1.

Chapter 4. Collision Detection and Response 44

of false negatives during narrow phase detection. The following section describes the

discrete iterative resolution, i.e. converging to a penetration-free state after penetrations

were already detected.

4.2 Collision Response

In this implementation, it was determined that it would be best to move ak of Mx on

three occasions, namely:

1. when ρx + ρy >
∣∣∣ (ak − cki)T ∣∣∣,

2. when radii are adjusted,

3. when penetration is detected with rays cast in a diagonal direction.

The first occasion will be described here while the second and third occasions will be

described in the next subsection. As mentioned previously, κ’s main purpose is to find a

correct location of Mx with respect to My, and is particularly useful for cases when more

than half of the volume of Mx lies in My or when Mx lies on the opposite side of My of its

supposed location. In these cases, when penetration depths are above a certain criteria,

ak ∈ A are displaced. The actual displacement of ak uses translation vectors that were

purposed for the UHM enhancement, but because at this stage the enhancement process

is already complete, their values can be adjusted for a new purpose. Each new position

is calculated by first subtracting the applied translation from the UHM. Let µk denote

the translation vector given by
(
ak − aorigk

)T
where aorigk denotes the original OpenSim

position before the UHM. Subtracting ak from µk gives then aorigk . With the obtained

aorigk , the new µk is then calculated as:

µk = cki +

ρx + ρy
(
ak − cki

)T∣∣∣ (ak − cki)T ∣∣∣
− aorigk (4.4)

There are also cases where ak does not have to be translated, here radii of Rk are

adjusted in order to preserve the same initial area prior deformation.

4.2.1 Retaining Cross Sectional Areas through Inflation

To keep the same cross sectional area after being deformed by the UHM enhancement

process, radii rki that would deform again due to detected collisions, are adjusted. Here

again the usefulness of using a cylindrical-based musculotendon construction comes for-

ward as it prevents Euclidian lengths of vectors to be calculated. Since in order to

Chapter 4. Collision Detection and Response 45

deform the musculotendon all that is needed is the adjustment of a radius. To retain

cross sectional area, an iterative approach is taken that incrementally expands rki a tiny

bit in each time step resulting in an inflation effect for the free area of Ck. Before infla-

tion, the deformed area after the UHM enhancement is stored and used as a target area

τ . In order to know which rki can be adjusted and which are currently being deformed

by another object, a distinction is made between radii, segmenting them into fixed and

free. A radius is flagged as fixed when it has to expand inwards due to its surrounding

surface edges detecting penetration of another object. Remaining radii are considered

free and are thus able to expand outwards. Both fixed and free indices i of each rki are

stored in the set Rfixedk and Rfreek respectively. As a rule of thumb, when confronted

with a penetration, fixed radii will decrease in distances of 10% until a Ck with κ reaches

a penetration free state5. When rki approaches zero, given as numerical limit ε, its cen-

troid ak is translated in direction of 1
10

(
ckio − ak

)T
, which is also 10% of the radius in

the opposite direction obtained with Equation 3.18. This allows Ck to translate slowly

out of the maximum penetrated area and not create a big enough gap between the two

collided objects at constrained cross sections. This same technique for displacement is

also applied on the third occasion when rays are cast in the diagonal in order to push

ak a bit outwards in each time step.

An important aspect of radii adjustment is to not lose the initial shape of τ , which

is achieved by calculating a factor for all other free radii with respect to a particular

radius that is fixed, and thus represents a radius that has finished deforming or is still

undergoing deformation. A radius factor fki can be calculated for each rki as the function:

fki (j) =
rkj

rki
,∀j : 0 ≤ j < |Ck| ∧ i 6= j (4.5)

To reach convergence, areas comprising of fixed and free radii, denoted as τfixed and

τfree are also taken into consideration. Due to the cylindrical construction, each Ck can

be split into its constituent triangles, allowing areas τkfixed and τkfree to be calculated

separately using scalar projections6. τkfixed and τkfree are calculated as:

τkfixed =

i<(|Ck|−1)∑
i=0

∆
(
ak, c

k
i , c

k
i+1

)
if i ∈ Rfixedk , (4.6)

τkfree =

i<(|Ck|−1)∑
i=0

∆
(
ak, c

k
i , c

k
i+1

)
if i ∈ Rfreek ,with (4.7)

5To increase convergence accuracy, the 10% could be lowered and will then take more iterations to
reach satisfaction.

6Uses just two length calculations, one in Equation 4.8 and 4.9, thus less costly than Heron’s formula.

Chapter 4. Collision Detection and Response 46

∆
(
ak, c

k
i , c

k
i+1

)
=

1

2

∣∣∣ (cki+1 − cki
)T ∣∣∣ h(ak, cki , cki+1

)
, and (4.8)

h
(
ak, c

k
i , c

k
i+1

)
=

∣∣∣∣ (cki +

((
ak − cki

)T
· ̂(
cki+1 − cki

)T ̂(
cki+1 − cki

)T))
− ak

∣∣∣∣ (4.9)

with ∆ representing the standard area equation for arbitrary triangles, and h outputting

the height of the projected vector along the base, minus ak. Finally, each time step

computes the maximum possible free area given as a function ω:

argmax
τkfree

ω
(
τkfree

)
:=
{
τkfree|

(
τ − τkfixed − τkfree

)
> ε
}

(4.10)

where ε denotes again a predefined error margin for numerical accuracy, e.g. 1× 10−6.

Chapter 5

Results and Discussion

5.1 The UHM Enhancement

Permuting matches to locate an inner point for each UCk , and adapting the longitudinal

and latitudinal scales, proved to be a good solution to the approximation of high poly

musculotendon geometry for the lower part of the human body. Figure 5.1 shows one

result visually, while Table 5.1 lists the total amount of vertices for 12 different scales

compared to the total amount of vertices used in meshes from the UHM.

(a) Before the UHM enhancement. (b) After the UHM enhancement. (c) Result covered by the UHM.

Figure 5.1: This result was obtained with 48 musculotendons having tLAT = 36 with
the cross sectional scalar CSS = 6, which was down sampled back to the lower scale
of |Ck| = 6. LSS was set to 1 to add one extra segment between two cross sections.
The complete model includes just 1536 vertices. Notice the approximations of C in the
lower half of (b) with thin strips of tendon around the ankle and knee joints that show

good approximation.

47

Chapter 5. Results and Discussion 48

LSS / |Ck| Hexagon{6} Octagon{8} Decagon{10} Dodecagon{12} UHM

0 960 1248 1536 1824

547231 1536 2016 2496 2976

2 2688 3552 4416 5280

Table 5.1: Number of vertices for a total of 48 musculotendons in 12 different scales
compared to the same amount of 48 UHM meshes.

Table 5.1 shows a drastic reduction for the amount of vertices used with in the real-

time model. For instance, at the scale of |Ck| = 12 and LSS = 2, the real-time model

uses ≈ 90% less vertices than the UHM. The 54723 vertices represent the total number

of vertices of 48 triangulated UHM meshes. Triangulation is a common practice for

polygonal meshes used in real-time game engines, however even without triangulation

all 48 UHM meshes still consisted of 42528 vertices1.

5.1.1 Non-linear Longitudinal Scaling

In subsection 3.6.1, an argument was given for the exponential term in Equation 3.19,

related to the uniform splitting of one segment between two other cross sections. There

is also a second argument for the non-linear increase that has to do with via points.

On the one hand, if LSS would increase linearly, then the original relative position of a

via point would be lost when each added cross section is placed exactly at the midpoint

between two other cross sections in order to retain uniformity. On the other hand,

if the relative position of a via point is to be remained fixed then there is no way of

systematically determining on which side of the via point the extra cross section would

be placed, either above or below the via point. Each possibility loses one benefit at

the expense of the other, therefore the solution of adding one extra cross section at the

midpoint between two other cross sections allows both benefits to be gained; scaling in

the longitudinal direction and retaining the relative positions of via points intact.

5.1.2 Approximating the UHM at Different Scales

The permutation σ given in Algorithm 1 works for both irregular convex and irregular

concave polygons as far as it was tested within the configurations and parameters used

in this project. Figure 5.2 shows a couple of examples.

1Refer to Appendix D for a complete overview of all 48 UHM meshes exported from Blender.

Chapter 5. Results and Discussion 49

(a) Several cross sections. (b) Ck with |Ck| = 24. (c) Ck with |Ck| = 48. (d) Centroid of quad.

Figure 5.2: Some examples for inner point determination. The line segments are
coloured as follows. Yellow represents matches e, blue represents segments between
vertices, black is the action line A, and finally red is the translation of ak from its original
position to the new inner point located within the approximated UHM mesh. (c) also
shows the additional detail captured form a highly concave mesh. (d) shows a case
where the centroid of a quadrilateral is taken. White represents the line segment that
connects adjacent centroids of each of the four triangles contained within a quadrilateral.

Figure 5.3a and 5.3b shows one example where adapting the latitudinal scale proved

to be useful for the Tibialis Posterior. The shortest intersected triangle found in the

positive direction was unfortunately at other parts of the tendon resulting in misplaced

cki ’s. This was remedied by increasing CSS to a high enough value that resulted in a

complete convergence for the via points with LSS = 2, as shown in Figure 5.3b.

(a) Incorrect result when CSS = 3. (b) Correct result when CSS = 6.

Figure 5.3: Misplaced action line due to partial convergence. (a) Shows an incorrect
translation when |Ck| = 8 and CSS = 3, however doubling the amount of cross sections
during approximation with CSS = 6 resulted into a complete converged tendon (c).

Figure 5.4 shows the approximation of a high poly UHM mesh of the Tibialis Anterior

at different scales. This shows that different scale combinations produce different results

before reaching convergence. The presumption here is that for thin segments, usually

ligaments and tendons, one would need enough surface vertices to cast enough rays in

order to detect enough matches. In this case for the Tibialis Anterior, the fact that

Chapter 5. Results and Discussion 50

it contains via points also increases the convergence rate. Because once via points are

repositioned to their correct location, it also prevents bisecting cross sections from being

misplaced.

Figure 5.4: The UHM approximation of the Tibialis Anterior in eight different scales
of Ck. The number below each mesh represents the total amount of vertices (without
the interpolated tendon cross section Ct). For this particular mesh convergence is
reached when |Ck| = 12, for both LSS = 1 and LSS = 2 while keeping CSS = 1. The

convergence for LSS = 2 shows a better approximation for the belly of the muscle.

In order to quantify the overall result, ray-triangle tests are carried out after the UHM

process is completed. These tests determine whether ak is actually inside a cross section

of an UHM mesh. Specifically, this is achieved by casting rays in two directions, namely

from ak along the direction of cki − ak and ckio − ak. If both rays intersect a back-facing

triangle, then it is assumed that ak lies inside an UHM mesh. The results are listed in

Table 5.2 and 5.3. The worse case for LSS = 1 represents just 23 (or 9.58%) of the total

amount of 240 cross sections, while the worse case for LSS = 2 represents just 42 (or

9.72%) of the total amount of 432 cross sections. It is also worth noting that complete

convergence is reached when the amount of rays cast is > 35, for both tested scales of

LSS = 1 and LSS = 2. This can be for instance when |Ck| = 6 and CSS = 6 (as shown

Chapter 5. Results and Discussion 51

in Table 5.2) or for instance when |Ck| = 36 and CSS = 12. The latter, where |Ck| = 36

and CSS = 1, is considered the optimal choice of parameters as it contains the most

information. In this configuration, the amount of vertices for all 48 musculotendons

totals 8736, which is still ≈ 16% of the UHM.

CSS / |Ck| Hexagon{6} Octagon{8} Decagon{10} Dodecagon{12}

1 23 19 7 8

2 8 7 7 3

3 7 3 1 0

4 3 2 0 0

5 1 0 0 0

6 0 0 0 0

Table 5.2: Amount of ak outside an UHM mesh for LSS = 1.

CSS / |Ck| Hexagon{6} Octagon{8} Decagon{10} Dodecagon{12}

1 42 24 12 17

2 17 12 10 5

3 10 5 2 0

4 5 3 0 0

5 2 0 0 0

6 0 0 0 0

Table 5.3: Amount of ak outside an UHM mesh for LSS = 2.

5.1.3 Match Detection

As discussed in Chapter 3, the classification of each match uses information from normals

of each triangle’s face. A previous version disregarded this information entirely due to

the fact that the normals of the UHM meshes were not correctly set. This previous

version took the furthest intersection point when casting rays in the positive direction,

and the closest intersection point when casting rays in the negative direction, regardless

of the normals. In the end, this resulted in slightly more errors when wrong intersection

points were taken in highly curved segments, as shown in Figure 5.3a. This led to the

inclusion of normal information by manually checking normals of modified UHM meshes

that were incorrectly set in Blender Foundation (2006) to reduce the amount of errors

and adapt the conditions outlined in subsection 3.5.3.2. These conditions also impose a

2In addition, for gathering the results, Line 14 and Line 15 of Algorithm 2 were disabled to isolate
the tests from OpenSim.

Chapter 5. Results and Discussion 52

limitation when the technique encounters two separate UCk in the same plane. In this

case, depending on the spatial configuration of Ck with respect to either UCk , a new

inner point will move within either one of the two closed curves, or when no matches are

detected, would result with a deformed Ck that emcompasses the empty space in between

and results in an incorrect areal representation. To prevent this from happening, areas

such as the head of the Medial Gastrocnemius that consists of two attachment sites had

to be closed in Blender Foundation (2006)3.

5.2 Collision Detection and Response

The strategy discussed in Chapter 4 tried to approach the problem of collision detection

and response from a different angle. The main takeaways are a new type of constraint

that works with alternate interior angles of the transversal for muscle reconfiguration.

This type of constraint prevents expensive length calculations to be performed such as

is the case with unilateral constraints or signed distance functions. Next to transversal

constraints, a narrow phase detection step that uses the same fast ray-casting algorithm

(Möller and Trumbore, 1997) is also included for both muscle versus muscle and muscle

versus skeleton penetration tests. The complete strategy was tested on a small set

of 10 muscles, which comprises of a total of five muscle versus muscle constraints, or

transversal constraints, and 20 muscle versus skeleton constraints. Three results are

given in Figure 5.5.

Unfortunately, the system is not stable for the complete set of 48 musculotendons due

to the exclusion of a physics engine, which forces deformations to be permanent. This

creates instabilities when too many interdependencies are introduced; such as when

muscle Mx affects My, and My is affected by skeleton mesh Sz that in turn affects back

Mx. The instability is exaggerated with muscles in and around the pelvic area as these

are heavily intersected with each other.

Another drawback of the solution is that transversal constraints have to be manually

placed and are scale-dependent, i.e. the same set of transversal constraints for |Ck| = 6

would not work for |Ck| = 8. The placement of each transversal constraint is also not

straightforward. Care has to be taken on which cki ’s of two to be constrained M ’s have

to be tagged, as wrong tags can also cause more displacement than necessary. Although

this can be remedied with physics-based techniques such as springs where equilibrial

displacement positions are converged to.

3This is further discussed in subsection 6.1.2.2.

Chapter 5. Results and Discussion 53

Finally, it is worth mentioning that during the implementation of ak displacements,

Catmull-Rom splines were added, where each constrained ak was used as a control point

for the spline, while the remaining ak’s are interpolated. The assumption was that the

curvedness of a spline would help pull the cross sections without a constraint a bit further

out thereby needing less constraints to reach a penetration free state. However, during

the implementation this was found to be untrue, and so the added spline computations

were removed.

5.2.1 Radii Inflation

For the iterative inflation of radii, this turned out to be a good approach in preserving

the same cross sectional area prior deformation in real-time, and provides a simple

implementation that takes advantage of the model’s cylindrical construction. Figure 5.6

shows one result for the three top cross sections of the Vastus Intermedius.

5.3 Real-Time Performance

Without the collision solver, the complete model with 48 loaded musculotendons having

|Ck| = 8 and LSS = 1, and upper and lower body skeleton meshes, ran 181Hz on

average with a loaded walk-cycle animation on the character Ralph. This was tested

on an Intel i5-3210M x64 CPU running at 2.50GHz with a NVIDIA GeForce GT 645M

mobile graphics card, and having OGRE compiled in release mode.

With an active collision solver, having a total of 25 collision constraints and 10 muscles

due to stability limitations (≈ 1
5 of the complete model set), the runtime was 164Hz

on average using the same system configuration and walk-cycle animation that was

mentioned previously. For this current solution, a fixed interval of one for every three

frames was used for the collision solver to aid during debugging, thereby slowing down

the rate of convergence to one iteration for every three cycles. However, this can be

decreased to one to provide a maximum and faster resolution of one iteration for each

cycle.

It is worth noting that both results are without any GPU or software-based parallelisa-

tion techniques. As reported in subsection 5.1.2, the optimal choice of parameters is with

|Ck| = 36 and CSS = 1. Here the performance was 135Hz on average with the same sys-

tem configuration as mentioned previously. Thereby satisfying the > 60Hz requirement

of real-time engines. Finally, it is also worth noting that the UHM enhancement process

itself takes around 10 seconds for 48 musculotendons with LSS = 1 and |Ck| = 36, and

is executed once at the beginning of each run.

Chapter 5. Results and Discussion 54

Figure 5.5: Three examples without and with constraints. (a) and (b) show how
transversal constraint could help in reconfiguring a correct path between two muscles.
(c) and (d) show how small ak displacements push the thick Gluteus Maximus outward.
(b) and (f) show the transversal constraint (in yellow) with (f) also showing the line
segment between ak and cki (in green), and the displacement of the right muscle from
the femur bone due to inflation. The example of (e) and (f) is also given in Figure 5.6.

Chapter 5. Results and Discussion 55

(a) Before inflation. (b) After inflation. (c) Displaced area shown in black.

Figure 5.6: Each displacement of the area of a triangle on Ck for two consecutive
cki ’s is shown above as a black line segment of one pixel thick, offset from the base of
every triangle. The thickness of culminated lines therefore gives an indication on the
total displaced area after one or more radii have been pushed out of the femur bone.
For this particular example, the three areas of the first three cross sections with values:
9.486×10−6, 1.916×10−4, and 2.587×10−4 where each area converged in parallel with
8, 4, and 6 iterations using Equation 4.10. Rest areas had a numerical threshold set by

ε = 1× 10−6. Areas were calculated using Equation 4.8.

Chapter 6

Conclusion and Future Work

This MSc project explored the creation of a collision-free and simple musculoskeletal

model that could be used in the future for applications such as musculoskeletal injury

simulation. Due to computational limits imposed by a real-time criterion, models usu-

ally have to deal with the tug of war between accuracy and real-time performance. This

project tried to keep the real-time performance in check by applying a lower bound on

the cardinality of Ck, and using triangle fans and strips for the cylinder-based musculo-

tendon unit. To leverage accuracy, low poly musculotendon models were systematically

enhanced by adding more detail from high poly models. This process, labelled the UHM

enhancement, introduced a permutation algorithm on pairs of intersection points. The

permutation allows the possibility to locate a point inside a cross section of a high poly

mesh by another separate cross section of a low poly mesh in a way that is invariant

to the spatial and polygonal configuration between the two meshes. Thus providing a

different way to represent high poly meshes from other data sets while keeping a simple

low poly representation for future considerations discussed in this section.

Collision management for soft bio-based materials still remains a challenge in computer-

based physics simulations, especially when real-time requirements are added on top.

After an unsuccessful attempt with Bullet Physics, the mental effort shifted back to ba-

sics, classifying the type of information that is available and determining how the simple

musculotendon model can be exploited to detect and respond to collisions. A transversal

constraint was introduced with the purpose of correctly arranging one musculotendon

with respect to another musculotendon spatially. This compensated unintended side ef-

fects attained from combining a polyline representation with action lines from Menegolo

(2011) and polygonal meshes from the UHM (Snoswell, 2003)1. In addition, an iterative

1One example is given in Figure 5.5 where action lines of OpenSim, when fitted inside geometrical
models, resulted in musculotendons intersecting each other.

56

Chapter 6. Conclusion and Future Work 57

method that inflates triangulated areas of each cross section was devised to preserve

cross sectional area in real time.

6.1 Improvements and Future Considerations

6.1.1 Biomechanical Accuracy

This project tackled the problem of combining an action line based biomechanical model

with a high poly model. As was previously discussed in subsection 3.4.3, the tendon

slack length currently includes both the length of the free tendon and the length of the

aponeurotic tendon (Delp et al., 1990). The latter represents the part of the tendon

that is internal to a muscle’s belly, i.e. it also extends through and within the muscle

fibres and does not end at the point that represents the starting point of the physical

muscle. In addition, classical Hill-type models such as Zajac (1988) combine the length

of each separate free tendon into a single variable, termed as ”in-series” in biomechanics,

while in reality most musculotendon units consists of at least one tendon on each side.

Unfortunately, during the course of this MSc project, no representation has been found

that divides the tendon length into separate lengths for the origin and insertion, and also

into its two constituents, free and aponeurotic. This is probably due to the complexity

inherit in anatomical and biomechanical measurements and difficulties in generalising

these measurements to be subject independent (Benjamin et al., 2006; Gerus et al.,

2012).

While simplifications such as these work well for state-of-the-art polyline-based biome-

chanical simulators (Millard et al., 2013), a combined tendon representation is not correct

for applications such as musculoskeletal injuries as geometrical or polygonal based rep-

resentations of musculotendons are indispensable2. It is here where a crossroad between

the two worlds meet as a three dimensional representation would allow volume to be

segmented with differing material properties alike their real anatomical counterparts.

Thus, until such progress is made, as argued by Epstein et al. (2006); Siebert et al.

(2008), assumptions have to be taken such as on the length of free and aponeurotic ten-

dons for musculoskeletal-dependent applications where musculotendon geometry plays

an active role. Future endeavours in computer animation that would need to combine

musculoskeletal geometry with biomechanical models should therefore investigate other

ways to combine these two separate worlds.

2For example, injuries on bi-articular muscles such as hamstrings where musculotendon geometry
plays an even larger role (Lenhart and Thelen, 2012).

Chapter 6. Conclusion and Future Work 58

6.1.2 Extending the Musculotendon Model

For this project, the lower body was used as a test case for reasons mentioned in section

3.2. The next logical step would be to include both lower and upper biomechanical

models for the human body. However, to accomplish this, improvements suggested to

the following class of similar problems should be considered first.

6.1.2.1 Linked Transformation Correction for A

Section 3.3 in Chapter 3 covered the great deal of work that went into the successful

attachment of the skeleton onto the animated character nicknamed Ralph. There is

however still one remaining improvement in the area of anthropometry that is described

as follows. Each musculotendon unit is attached relative to the origin of an OpenSim

body object. After applying the transformations required for the semi-automatic skele-

ton mesh alignment technique, some attachment points of muscles, which also inherited

the same transformations, were slightly off. This has to do with the skeleton hierarchy

affecting relative distances after being attached to the bone hierarchy of Ralph. The

illustration in Figure 6.1 gives an example. Perhaps a future experimental project could

establish which approach, such as comparing marker placement of motion-capture data,

is able to best solve this anthropometric scaling problem.

original scaled
feet

desired
result

Figure 6.1: Linked transformation correction for a muscle path. The via point is
attached to the parent of the foot and not influenced by the scaling of linked children.
This results in a curve deviating from the original path. In this example, the correction

would entail transforming the via points such that all internal angles are respected.

Chapter 6. Conclusion and Future Work 59

6.1.2.2 Multiple Action Lines for Wide Attachments

Within the human body there are some musculotendons that consist of more than one

tendon at each side of attachment, such as the Extensor Digitorum Communis and the

Abductor Pollicis Longus found on the forearm and palmar regions (Holzbaur et al.,

2005). There are also broad and flat tendons known as aponeuroses that join muscle

with muscle or muscle with skeleton along a broader area (Encyclopedia Britannica,

2014a). The representation of aponeurotic tendons is especially important if an upper

body model has to include the ventral abdominal region or the dorsal lumbar region.

Finally there is the problem area for the Gluteus group of musculotendons for the lower

body, where some biomechanical models, like the one used for this project, divides each

musculotendon into three separate units for their action line based representation. This

resulted in high quality meshes being manually, and therefore inaccurately segmented

as shown in Figure 3.14.

To conclude, the musculotendon model presented here should be extended to include a

representation with multiple action lines and multiple attachment points to account for

all types of musculotendons, but nevertheless be part of (or enclosed by) a single simple

geometrical shape.

6.1.2.3 Distinct Heads

The Medial Gastrocnemius from the UHM had to be adapted in Blender (Blender Foun-

dation, 2006) in order to prevent the match detection process from converging solely at

either one of its two heads. Similar to the problems discussed in the previous subsection,

the musculotendon model should be able to have a ”splitting” option to account for mul-

tiple heads, as musculotendons in the upper body (e.g. the Biceps Brachii) also exhibit

this feature. All in all, these improvements would make the geometric musculotendon

model more robust as it does not have to depend on the limitations imposed by action

line based biomechanical models.

6.1.2.4 A Geometric Representation for Ligaments

Ligaments connect skeletal bones with each other and can therefore be considered the

real physical joints within the musculoskeletal system. They extend mechanical support

to joints, improving its stability, help guide joint motion, and prevent excessive motion.

The inclusion of ligaments would open up new applications for musculotendon modelling

in computer animation. For instance, simulating musculoskeletal injuries that include

damaged ligaments (e.g. spinal injuries).

Chapter 6. Conclusion and Future Work 60

6.1.3 Complete Collision Detection and Response

The addition of transversal constraints allow musculotendons to be configured spatially

with awareness of each other, however each constraint is currently being placed manually.

One improvement would be to develop a technique that allows automatic placements

of constraints. Furthermore, the complete collision strategy is currently stable for just

10 musculotendons with 25 constraints. This instability can certainly be improved by

including the system within a real-time physics engine as section 5.3 has demonstrated

that the real-time performance is not hindered by the collision manager. In this scenario,

spring-mass systems with added dampers could be used to reach optimal equilibrium.

6.1.4 The Musculotendon Model for FEM and Inverse Dynamics

Future applications for this musculotendon model, such as realistic musculoskeletal in-

juries, require that the model should be able to deform in a physically accurate way and

thus physical properties such as the volume of each compartment of the model should be

accounted for. Using the current construction, this can be achieved with the tetrahedral-

isation approach shown in Figure 6.2. The cylinder-based geometrical model presented

in this thesis is therefore suitable for deformation techniques using FEM. This approach

works as follows. Each segment of the geometrical musculotendon can be subdivided into

a set of irregular triangular frustums, shown in Figure 6.2a and 6.2b3. In turn, each frus-

tum can be further subdivided into three separate tetrahedrons, shown in Figure 6.2c.

Using for instance a latitudinal dimension of six and for a particular musculotendon, the

muscle compartment would encompass four segments, then the amount of tetrahedrons

would be 3× 6× 4 = 72, which is around 1% of the total amount of tetrahedrons used

in the demonstration of Berranen et al. (2012) that had a performance result of 45Hz.

(a) (b) (c)

1

2 3

c4k+1 c1k+1

c3k+1 c2k+1

ak ck1
ck2ck3

ck4

ck5 ck0

Figure 6.2: Schematic figures showing how volume of segments can be computed.

With the componential representation of the total volume for every segment that repre-

sents muscle, and because all of the vertices from the musculotendon model are known,

3Note that the graphical object does not actually render faces between segments as only the surface
representation is sent to OGRE and drawn with triangle fans and strips, as described in subsection 3.7.

Chapter 6. Conclusion and Future Work 61

each tetrahedron’s volume can be calculated geometrically as:

ν =
| (w − z) · ((x− z)× (y − z)) |

6
(6.1)

with w, x, y, z representing four known vertices from a musculotendon model M . Sum-

ming up the volume for every tetrahedron that occupies the segments that represents

the muscle compartment (up until j from Equation 3.13) gives thus the overall volume

for just the muscle part, denoted by νM . Using an estimated muscle tissue density of

e.g. 1059.7kg/m3 for mammalian muscle (Dorn, 2014), would allow the mass of each

tetrahedron to be estimated as well. In addition, different material properties for every

tetrahedron can be separately assigned to the muscle and tendon compartments.

Because the current musculotendon model includes an embedded biomechanical model,

it also has the necessary information to solve inverse dynamics. However, given the

inclusion of geometric information, this additionally allows the model to estimate indi-

vidual muscle forces in a geometrical way, similar to Lee et al. (2009). This works as

follows. Using the optimal fibre length lFo from Menegolo (2011), the alternative and

faster computation of the physiological cross-sectional area, denoted as PCSA2 can be

calculated for pennate muscles, given as:

PCSA2 =
νM cosα

lFo
. (6.2)

This in turn allows an individual muscle force FM to be estimated geometrically as:

FM = PCSA2SM (6.3)

where FM represents the estimated muscle force and SM denotes the specific tension

metric (which is a constant) for a particular muscle4. Tension information, e.g. within

a range of 32 − 61Ncm−2, can be obtained from experimental measurements as well as

biomechanical models in literature such as Dorn (2014); O’Brien et al. (2010); Maganaris

et al. (2001); Arnold et al. (2010); Hansen et al. (2006); Vasavada et al. (1998); Lieber

et al. (1992); An et al. (1981); Langenderfer et al. (2004); Jacobson et al. (1992).

4Note however that the estimated force can vary widely as it depends on the accuracy of musculo-
tendon model and estimated measurements of specific tension (Fukunaga et al., 1996; Buchanan, 1995).

Bibliography

Albrecht, I., Haber, J., and Seidel, H. (2003). Construction and animation of

anatomically based human hand models. In Proceedings of the 2003 ACM

SIGGRAPH/Eurographics symposium on Computer animation, pages 98–109.

Eurographics Association.

An, K., Hui, F., Morrey, B., Linscheid, R., and Chao, E. (1981). Muscles across the

elbow joint: a biomechanical analysis. Journal of biomechanics, 14(10):659–669.

Anderson, F. and Pandy, M. (1999). A dynamic optimization solution for vertical

jumping in three dimensions. Computer Methods in Biomechanics and Biomedical

Engineering, 2(3):201–231.

Anderson, F., Pandy, M. G., et al. (2001). Dynamic optimization of human walking.

Transactions-American Society of Mechanical Engineers Journal of Biomechanical

Engineering, 123(5):381–390.

Arnold, E., Ward, S., Lieber, R., and Delp, S. (2010). A model of the lower limb for

analysis of human movement. Annals of biomedical engineering, 38(2):269–279.

Aubel, A. and Thalmann, D. (2001a). Efficient muscle shape deformation. In

Deformable avatars, pages 132–142. Springer.

Aubel, A. and Thalmann, D. (2001b). Interactive modeling of the human musculature.

In Computer Animation, 2001. The Fourteenth Conference on Computer Animation.

Proceedings, pages 167–255. IEEE.

Benjamin, M., Toumi, H., Ralphs, J., Bydder, G., Best, T., and Milz, S. (2006). Where

tendons and ligaments meet bone: attachment sites (‘entheses’) in relation to

exercise and/or mechanical load. Journal of Anatomy, 208(4):471–490.

Berranen, Y., Hayashibe, M., Gilles, B., and Guiraud, D. (2012). 3d volumetric muscle

modeling for real-time deformation analysis with fem. In Engineering in Medicine

and Biology Society (EMBC), 2012 Annual International Conference of the IEEE,

pages 4863–4866. IEEE.

62

Bibliography 63

Blemker, S. and Delp, S. (2005). Three-dimensional representation of complex muscle

architectures and geometries. Annals of biomedical engineering, 33(5):661–673.

Blender Foundation (2006). Blender.org - home of the blender project - free and open

3d creation software. Available from: http://www.blender.org/ [cited 14th of

January 2014].

Bourke, P. (1988). Calculating the area and centroid of a polygon. Available from:

http://paulbourke.net/geometry/polygonmesh/centroid.pdf [cited 28th of

January 2014].

Buchanan, T. (1995). Evidence that maximum muscle stress is not a constant:

differences in specific tension in elbow flexors and extensors. Medical engineering &

physics, 17(7):529–536.

Cameron, S. (1997). Enhancing gjk: Computing minimum and penetration distances

between convex polyhedra. In ICRA, volume 97, pages 20–25. Citeseer.

Chadwick, J., Haumann, D., and Parent, R. (1989). Layered construction for

deformable animated characters. In ACM Siggraph Computer Graphics, volume 23,

pages 243–252. ACM.

Chen, D. and Zeltzer, D. (1992). Pump it up: Computer animation of a

biomechanically based model of muscle using the finite element method, volume 26.

ACM.

Christophy, M. (2010). A detailed open-source musculoskeletal model of the human

lumbar spine. PhD thesis, University of California.

Coumans, E. (2013). Real-time physics simulation: Home of the open source bullet

physics library and physics discussion forums. Available from:

http://bulletphysics.org/ [cited 9th of February 2014].

Delp, S., Anderson, F., Arnold, A., Loan, P., Habib, A., John, C., Guendelman, E.,

and Thelen, D. (2007). Opensim: open-source software to create and analyze

dynamic simulations of movement. Biomedical Engineering, IEEE Transactions on,

54(11):1940–1950.

Delp, S., Loan, J., Hoy, M., Zajac, F., Topp, E., and Rosen, J. (1990). An interactive

graphics-based model of the lower extremity to study orthopaedic surgical

procedures. Biomedical Engineering, IEEE Transactions on, 37(8):757–767.

Dorn, T. (2014).

Opensim::musclemetabolicpowerprobeumberger2010 metabolicmuscleparameter.

http://www.blender.org/
http://paulbourke.net/geometry/polygonmesh/centroid.pdf
http://bulletphysics.org/

Bibliography 64

Available from: https://simtk.org/api_docs/opensim/api_docs31/

classOpenSim_1_1MuscleMetabolicPowerProbeUmberger2010_

_MetabolicMuscleParameter.html [cited 20th of February 2014].

Duckham, M., Kulik, L., Worboys, M., and Galton, A. (2008). Efficient generation of

simple polygons for characterizing the shape of a set of points in the plane. Pattern

Recognition, 41(10):3224–3236.

Encyclopedia Britannica (2014a). Aponeurosis. Available from:

http://www.britannica.com/EBchecked/topic/30151/aponeurosis [cited

19th of February 2014].

Encyclopedia Britannica (2014b). Tendon (anatomy) – encyclopedia britannica.

Available from:

http://www.britannica.com/EBchecked/topic/587171/tendon [cited 6th of

January 2014].

Epstein, M., Wong, M., and Herzog, W. (2006). Should tendon and aponeurosis be

considered in series? Journal of biomechanics, 39(11):2020–2025.

Fukunaga, T., Roy, R., Shellock, F., Hodgson, J., and Edgerton, V. (1996). Specific

tension of human plantar flexors and dorsiflexors. Journal of Applied Physiology,

80(1):158–165.

Geijtenbeek, T., van de Panne, M., and van der Stappen, A. (2013). Flexible

muscle-based locomotion for bipedal creatures. ACM Transactions on Graphics

(TOG), 32(6):206.

Gerus, P., Rao, G., and Berton, E. (2012). Subject-specific tendon-aponeurosis

definition in hill-type model predicts higher muscle forces in dynamic tasks. PloS

one, 7(8):e44406.

Goldman, R. (1990). Intersection of two lines in three-space. In Graphics Gems, page

304. Academic Press Professional, Inc.

Gurram, P., Rhody, H., Kerekes, J., Lach, S., and Saber, E. (2007). 3d scene

reconstruction through a fusion of passive video and lidar imagery. In Applied

Imagery Pattern Recognition Workshop, 2007. AIPR 2007. 36th IEEE, pages

133–138. IEEE.

Hansen, L., De Zee, M., Rasmussen, J., Andersen, T., Wong, C., and Simonsen, E.

(2006). Anatomy and biomechanics of the back muscles in the lumbar spine with

reference to biomechanical modeling. Spine, 31(17):1888–1899.

https://simtk.org/api_docs/opensim/api_docs31/classOpenSim_1_1MuscleMetabolicPowerProbeUmberger2010__MetabolicMuscleParameter.html
https://simtk.org/api_docs/opensim/api_docs31/classOpenSim_1_1MuscleMetabolicPowerProbeUmberger2010__MetabolicMuscleParameter.html
https://simtk.org/api_docs/opensim/api_docs31/classOpenSim_1_1MuscleMetabolicPowerProbeUmberger2010__MetabolicMuscleParameter.html
http://www.britannica.com/EBchecked/topic/30151/aponeurosis
http://www.britannica.com/EBchecked/topic/587171/tendon

Bibliography 65

Hicks, J. (2012a). Muscle editor - opensim documentation. Available from: http:

//simtk-confluence.stanford.edu:8080/display/OpenSim/Muscle+Editor

[cited 23th of December 2013].

Hicks, J. (2012b). Opensim models: Documentation. Available from: http://simtk-

confluence.stanford.edu:8080/display/OpenSim/OpenSim+Models [cited

29th of December 2013].

Hirota, G., Fisher, S., State, A., Lee, C., and Fuchs, H. (2001). An implicit finite

element method for elastic solids in contact. In Computer Animation, 2001. The

Fourteenth Conference on Computer Animation. Proceedings, pages 136–254. IEEE.

Holzbaur, K., Murray, W., and Delp, S. (2005). A model of the upper extremity for

simulating musculoskeletal surgery and analyzing neuromuscular control. Annals of

biomedical engineering, 33(6):829–840.

Hoy, M., Zajac, F., and Gordon, M. (1990). A musculoskeletal model of the human

lower extremity: the effect of muscle, tendon, and moment arm on the moment-angle

relationship of musculotendon actuators at the hip, knee, and ankle. Journal of

Biomechanics, 23(2):157–169.

Jacobson, A., Kavan, L., and Sorkine-Hornung, O. (2013). Robust inside-outside

segmentation using generalized winding numbers. ACM Trans. Graph, 32:4.

Jacobson, M. D., Raab, R., Fazeli, B., Abrams, R., Botte, M., and Lieber, R. (1992).

Architectural design of the human intrinsic hand muscles. The Journal of hand

surgery, 17(5):804–809.

Kohout, J., Clapworthy, G., Tao, Y., Dong, F., Kelnhoffer, P., Cholt, D., and Zhao, Y.

(2012). Technologies for modelling fibrous muscle in motion. In VPH 2012 London.

Virtual Physiological Human.

Laclé, F. P. (2013). A literature review for the master project: Real-time

musculoskeletal model for injury simulation on 3d human characters. Available from:

http://vhtlab.nl/sites/default/files/A%20Literature%20Review%20on%

20Real-Time%20Musculoskeletal%20Model%20for%20Injury%20Simulation%

20on%203D%20Human%20Characters.pdf [cited 21th of February 2014].

Langenderfer, J., Jerabek, S., Thangamani, V., Kuhn, J., and Hughes, R. (2004).

Musculoskeletal parameters of muscles crossing the shoulder and elbow and the

effect of sarcomere length sample size on estimation of optimal muscle length.

Clinical Biomechanics, 19(7):664–670.

http://simtk-confluence.stanford.edu:8080/display/OpenSim/Muscle+Editor
http://simtk-confluence.stanford.edu:8080/display/OpenSim/Muscle+Editor
http://simtk-confluence.stanford.edu:8080/display/OpenSim/OpenSim+Models
http://simtk-confluence.stanford.edu:8080/display/OpenSim/OpenSim+Models
http://vhtlab.nl/sites/default/files/A%20Literature%20Review%20on%20Real-Time%20Musculoskeletal%20Model%20for%20Injury%20Simulation%20on%203D%20Human%20Characters.pdf
http://vhtlab.nl/sites/default/files/A%20Literature%20Review%20on%20Real-Time%20Musculoskeletal%20Model%20for%20Injury%20Simulation%20on%203D%20Human%20Characters.pdf
http://vhtlab.nl/sites/default/files/A%20Literature%20Review%20on%20Real-Time%20Musculoskeletal%20Model%20for%20Injury%20Simulation%20on%203D%20Human%20Characters.pdf

Bibliography 66

Lee, D., Glueck, M., Khan, A., Fiume, E., and Jackson, K. (2010). A survey of

modeling and simulation of skeletal muscle. ACM Transactions on Graphics, 28(4).

Lee, K. and Ashraf, G. (2007). Simplified muscle dynamics for appealing real-time skin

deformation. In CGVR, page 160. Citeseer.

Lee, S., Sifakis, E., and Terzopoulos, D. (2009). Comprehensive biomechanical

modeling and simulation of the upper body. ACM Transactions on Graphics (TOG),

28(4):99.

Lemos, R., Epstein, M., Herzog, W., and Wyvill, B. (2001). Realistic skeletal muscle

deformation using finite element analysis. In Computer Graphics and Image

Processing, 2001 Proceedings of XIV Brazilian Symposium on, pages 192–199. IEEE.

Lenhart, R. and Thelen, D. (2012). Influence of musculoskeletal geometry on

model-based predictions of plantarflexor function during gait. In GCMAS Annual

Conference.

Lieber, R., Jacobson, M., Fazeli, B., Abrams, R., and Botte, M. (1992). Architecture

of selected muscles of the arm and forearm: anatomy and implications for tendon

transfer. The Journal of hand surgery, 17(5):787–798.

Lund, K. and Hicks, J. (2012). Coordinates and utilities - opensim documentation.

Available from: http://simtk-confluence.stanford.edu:

8080/display/OpenSim/Coordinates+and+Utilities [cited 27th of December

2013].

Maganaris, C., Baltzopoulos, V., Ball, D., and Sargeant, A. (2001). In vivo specific

tension of human skeletal muscle. Journal of applied physiology, 90(3):865–872.

Mamou, K. (2013). Hierarchical approximate convex decomposition of 3d meshes.

Available from: http://sourceforge.net/projects/hacd/ [cited 9th of

February 2014].

McGonagle, D. and Benjamin, M. (2013). Muscle attachments to bone as an

unrecognised cause of pain. Available from:

http://www.enthesis.info/anatomy/muscle_and_enthesis.html [cited 4nd of

January 2014].

Menegolo, A. (2011). Simtk.org: Upper and lower body model: Overview. Available

from: https://simtk.org/home/ulb_project [cited 26th of August 2013].

Millard, M., Uchida, T., Seth, A., and Delp, S. (2013). Flexing computational muscle:

Modeling and simulation of musculotendon dynamics. Journal of Biomechanical

http://simtk-confluence.stanford.edu:8080/display/OpenSim/Coordinates+and+Utilities
http://simtk-confluence.stanford.edu:8080/display/OpenSim/Coordinates+and+Utilities
http://sourceforge.net/projects/hacd/
http://www.enthesis.info/anatomy/muscle_and_enthesis.html
https://simtk.org/home/ulb_project

Bibliography 67

Engineering, 135(2):021005–021005. Available from:

http://dx.doi.org/10.1115/1.4023390.

Mohr, A. and Gleicher, M. (2003). Building efficient, accurate character skins from

examples. In ACM Transactions on Graphics (TOG), volume 22, pages 562–568.

ACM.

Möller, T. and Trumbore, B. (1997). Fast, minimum storage ray-triangle intersection.

Journal of graphics tools, 2(1):21–28.

Nordin, M. and Frankel, V. (2012). Basic Biomechanics of the Musculoskeletal System.

Wolters Kluwer Health, 4th edition.

O’Brien, T., Reeves, N., Baltzopoulos, V., Jones, D., and Maganaris, C. (2010). In

vivo measurements of muscle specific tension in adults and children. Experimental

physiology, 95(1):202–210.

Patterson, M. (2003). The centroid of the quadrilateral. Available from:

http://jwilson.coe.uga.edu/emt668/EMT668.Folders.F97/Patterson/EMT%

20669/centroid%20of%20quad/Centroid.html [cited 8th of March 2014].

Ramos, J. and Larboulette, C. (2009). Real-time anatomically based character

animation. In Proc. of the ACM SIGGRAPH Symposium on Interactive 3D

Graphics and Games, Posters and Demos.

Rankin, J. and Neptune, R. (2012). Musculotendon lengths and moment arms for a

three-dimensional upper-extremity model. Journal of biomechanics, 45(9):1739–1744.

Sánchez, C., Lloyd, J., Fels, S., and Abolmaesumi, P. (2014). Embedding digitized

fibre fields in finite element models of muscles. Computer Methods in Biomechanics

and Biomedical Engineering: Imaging & Visualization, pages 1–14.

Scheepers, F., Parent, R., Carlson, W., and May, S. (1997). Anatomy-based modeling

of the human musculature. In Proceedings of the 24th annual conference on

Computer graphics and interactive techniques, pages 163–172. ACM

Press/Addison-Wesley Publishing Co.

Seth, A., Sherman, M., Reinbolt, J., and Delp, S. (2011). Opensim: a musculoskeletal

modeling and simulation framework for in silico investigations and exchange.

Procedia IUTAM, 2:212–232.

Sherman, M. and Eastman, P. (2012). Simbody: Multibody physics api: Overview.

Available from: https://simtk.org/home/simbody [cited 27th of December 2013].

http://dx.doi.org/10.1115/1.4023390
http://jwilson.coe.uga.edu/emt668/EMT668.Folders.F97/Patterson/EMT%20669/centroid%20of%20quad/Centroid.html
http://jwilson.coe.uga.edu/emt668/EMT668.Folders.F97/Patterson/EMT%20669/centroid%20of%20quad/Centroid.html
https://simtk.org/home/simbody

Bibliography 68

Siebert, T., Rode, C., Herzog, W., Till, O., and Blickhan, R. (2008). Nonlinearities

make a difference: comparison of two common hill-type models with real muscle.

Biological cybernetics, 98(2):133–143.

Snoswell, M. (2003). Cg character - the ultimate human. Available from:

http://www.cgcharacter.com/ultimatehuman.html [cited 12th of January

2014].

Sueda, S., Kaufman, A., and Pai, D. (2008). Musculotendon simulation for hand

animation. In ACM Transactions on Graphics (TOG), volume 27, page 83. ACM.

Tan, J., Turk, G., and Liu, C. (2012). Soft body locomotion. ACM Transactions on

Graphics (TOG), 31(4):26.

Taylor, T. (2013). Muscles of the leg and foot – male view. Available from:

http://www.innerbody.com/anatomy/muscular/leg-foot-male [cited 6th of

January 2014].

Teran, J., Blemker, S., Hing, V., and Fedkiw, R. (2003). Finite volume methods for the

simulation of skeletal muscle. In Proceedings of the 2003 ACM

SIGGRAPH/Eurographics symposium on Computer animation, pages 68–74.

Eurographics Association.

Teran, J., Sifakis, E., Blemker, S., Ng-Thow-Hing, V., Lau, C., and Fedkiw, R. (2005).

Creating and simulating skeletal muscle from the visible human data set.

Visualization and Computer Graphics, IEEE Transactions on, 11(3):317–328.

Thalmann, D., Shen, J., and Chauvineau, E. (1996). Fast realistic human body

deformations for animation and vr applications. In Computer Graphics

International, 1996. Proceedings, pages 166–174. IEEE.

The National Center for Simulation in Rehabilitation Research (2010). Official

opensim website. Available from: http://opensim.stanford.edu/ [cited 24th of

August 2013].

Torus Knot Software Ltd (2013). Ogre source: Ogrequaternion.cpp — bitbucket.

Available from: http:

//www.ogre3d.org/docs/api/1.9/OgreVector3_8h_source.html#l00655

[cited 2nd of January 2014].

Vasavada, A., Li, S., and Delp, S. (1998). Influence of muscle morphometry and

moment arms on the moment-generating capacity of human neck muscles. Spine,

23(4):412–422.

http://www.cgcharacter.com/ultimatehuman.html
http://www.innerbody.com/anatomy/muscular/leg-foot-male
http://opensim.stanford.edu/
http://www.ogre3d.org/docs/api/1.9/OgreVector3_8h_source.html#l00655
http://www.ogre3d.org/docs/api/1.9/OgreVector3_8h_source.html#l00655

Bibliography 69

Whitaker, A. (2006). Sacred-geometry: The first step. Available from:

http://www.ancient-wisdom.co.uk/sacredgeometry.htm [cited 13th of

January 2014].

Wilhelms, J. and Van Gelder, A. (1997). Anatomically based modeling. In Proceedings

of the 24th annual conference on Computer graphics and interactive techniques,

pages 173–180. ACM Press/Addison-Wesley Publishing Co.

Yamaguchi, G. and Zajac, F. (1989). A planar model of the knee joint to characterize

the knee extensor mechanism. Journal of Biomechanics, 22(1):1 – 10. Available

from:

http://www.sciencedirect.com/science/article/pii/0021929089901796.

Zajac, F. (1988). Muscle and tendon: properties, models, scaling, and application to

biomechanics and motor control. Critical reviews in biomedical engineering,

17(4):359–411.

Zhu, Q., Chen, Y., and Kaufman, A. (1998). Real-time biomechanically-based muscle

volume deformation using fem. In Computer Graphics Forum, volume 17, pages

275–284. Wiley Online Library.

http://www.ancient-wisdom.co.uk/sacredgeometry.htm
http://www.sciencedirect.com/science/article/pii/0021929089901796

Appendix A

List of Included Musculotendons

(OpenSim)

Musculotendons from Menegolo (2011) for the lower body, sorted alphabetically. Each

musculotendon is included twice in the project to account for both sides (left and right) of

the human body reaching a combined total of 48 biomechanical musculotendons during

the simulation’s runtime.

ID Anatomical Label ID Anatomical Label

6 Adductor Magnus 2 20 Medial Gastrocnemius

3 Biceps Femoris-Long Head 8 Pectineus

4 Biceps Femoris-Short Head 17 Piriformis

10 Gluteus Maximus 1 14 Psoas Major

11 Gluteus Maximus 2 15 Quadratus Femoris

12 Gluteus Maximus 3 18 Rectus Femoris

0 Gluteus Medius 1 5 Sartorius

1 Gluteus Medius 2 21 Soleus

2 Gluteus Medius 3 7 Tensor Fasciae Latae

9 Gracilis 23 Tibialis Anterior

13 Iliacus 22 Tibialis Posterior

16 Inferior Gemellus 19 Vastus Intermedius

1

Appendix B

Ralph’s Bone Hierarchy (RAGE)

root

vl5 r_hip l_hip

vl3

vl1

vt10

vt1

vc4 r_sternoclavicular l_sternoclavicular

vc2

skullbase r_eyeball_joint l_eyeball_joint

r_eyeball l_eyeball

r_shoulder

r_elbow

r_wrist

r_thumb0 r_index0 r_middle0 r_ring0 r_pinky0

r_thumb1

r_thumb2

r_thumb3

r_index1

r_index2

r_index3

r_middle1

r_middle2

r_middle3

r_ring1

r_ring2

r_ring3

r_pinky1

r_pinky2

r_pinky3

l_shoulder

l_elbow

l_wrist

l_thumb0 l_index0 l_middle0 l_ring0 l_pinky0

l_thumb1

l_thumb2

l_thumb3

l_index1

l_index2

l_index3

l_middle1

l_middle2

l_middle3

l_ring1

l_ring2

l_ring3

l_pinky1

l_pinky2

l_pinky3

r_knee

r_ankle

r_subtalar

r_foot

l_knee

l_ankle

l_subtalar

l_foot

2

Appendix C

Upper and Lower Body Skeleton

Hierarchy (OpenSim)

A digit prefixing each node’s label indicates the amount of OGRE meshes attached to

each OpenSim body.

1:ground

3:pelvis

4:thorax

1:femur_r

1:femur_l

1:clavicle

1:clavicle_l

2:tibia_r

1:talus_r

1:calcn_r

1:toes_r

2:tibia_l

1:talus_l

1:calcn_l

1:toes_l

1:scapula

1:humerus

1:ulna

1:radius

1:lunate

1:scaphoid 1:pisiform 1:triquetrum 1:capitate

1:trapezium 1:trapezoid 1:hamate 1:secondmc 1:thirdmc 1:fourthmc 1:fifthmc

1:firstmc

1:proximal_thumb

1:2proxph 1:3proxph 1:4proxph 1:5proxph

1:distal_thumb

1:2midph

1:2distph

1:3midph

1:3distph

1:4midph

1:4distph

1:5midph

1:5distph

1:scapula_l

1:humerus_l

1:ulna_l

1:radius_l

1:lunate_l

1:scaphoid_l 1:pisiform_l 1:triquetrum_l 1:capitate_l

1:trapezium_l 1:trapezoid_l 1:hamate_l 1:secondmc_l 1:thirdmc_l 1:fourthmc_l 1:fifthmc_l

1:firstmc_l

1:proximal_thumb_l

1:2proxph_l 1:3proxph_l 1:4proxph_l 1:5proxph_l

1:distal_thumb_l

1:2midph_l

1:2distph_l

1:3midph_l

1:3distph_l

1:4midph_l

1:4distph_l

1:5midph_l

1:5distph_l

3

Appendix D

List of Included UHM Meshes

Musculotendon mesh files from the Ultimate Human Model data set Snoswell (2003) for

the lower body sorted alphabetically. Note that some mesh files were combined to fit

a single musculotendon unit in OpenSim, while others where divided for cases where

OpenSim represents a single muscle with multiple action-lines, such as the Gluteus

Maximus Blemker and Delp (2005). The ID field in the table below refers to mapped

ID’s of the OpenSim musculotendon where a particular UHM mesh was attached to,

given in Appendix A. In addition, each processed mesh is included twice in the project

to account for both sides (left and right) of the human body.

ID UHM Mesh Combined with Divided into Anatomical Label

0 r mbu002 r mbu002.1 Gluteus Medius

1 r mbu002.2

2 r mbu002.3

3 r mul004 b Biceps Femoris (b)

4 r mul004 a Biceps Femoris (a)

5 r mul007 Sartorius

6 r mul003 b Adductor Magnus (b)

r mul003 c Adductor Magnus (c)

7 r mul010 Tensor Fasciae Latae

r lig027 Iliotibial Band

8 r mhi006 Pectineus

4

Appendix D. List of Included UHM Meshes 5

ID UHM Mesh Combined with Divided into Anatomical Label

9 r mul005 Gracilis

10 r mbu001 c r mbu001 c.1 Gluteus Maximus (c)

11 r mbu001 c.2

12 r mbu001 c.3

13 r mhi003 f Iliospoas (f)

14 r mhi003 d Iliospoas (d)

15 r mhi009 Quadratus Femoris

16 r mhi001 Inferior Gemellus

17 r mhi007 Piriformis

18 r mul006 b Rectus Femoris (b)

19 r mul011 b Vastus Intermedius (b)

r mul011 a Vastus Intermedius (a)

20 r lig044 Calcaneal Tendon

r mll005 a Gastrocnemius (a)

r mll005 b Gastrocnemius (b)

21 r mll010 a Soleus (a)

r mll010 b Soleus (b)

22 r mll012 g Tibialis Posterior (g)

r mll012 a Tibialis Posterior (a)

r mll012 b Tibialis Posterior (b)

r mll012 c Tibialis Posterior (c)

r mll012 d Tibialis Posterior (d)

r mll012 e Tibialis Posterior (e)

r mll012 f Tibialis Posterior (f)

23 r mll011 c Tibialis Anterior (c)

r mll011 a Tibialis Anterior (a)

r mll011 b Tibialis Anterior (b)

Appendix E

Edge List Sort Algorithm

1 # Script to sort edge list

2 # of a simple polygon with

3 # 1 face.

4 # Something like this:

5 # 0_________3

6 # / \

7 # 4/ \2

8 # \ /

9 # 5_________/1

10 # becomes sorted as {[4,5],[5,1],...,[0,4]}.

11 # Tested with Blender v2.67.

12 # ##! Make sure to be in Edit Mode !##

13

14 import bpy

15 import os

16

17 #clear screen (command for windows)

18 os.system(’cls’)

19

20 scn = bpy.context.scene

21 obj = bpy.context.object

22

23 #get mesh data from object

24 mesh = obj.data

25

26 edge_count = mesh.total_edge_sel

27 print("number of elements in m:", edge_count)

28

29 if(edge_count > 0):

30

31 e = []

32 e.append(mesh.edges[0])

33 flip = []

34

35 #main loop for edge e

36 for e_iter in mesh.edges:

37 eb = e[-1].vertices[1] #end vertex of last edge of e

38 found = False

6

Appendix E. Edge List Sort Algorithm (for Blender 3D Authoring Software) 7

39

40 #first search

41 for m in mesh.edges:

42 ma = m.vertices[0] #begin vertex of edge m

43 mb = m.vertices[1] #end vertex of edge m

44 if(eb == ma):

45 flipFound = False

46 for n in e:

47 if(n.vertices[0] == mb and n.vertices[1] == ma):

48 flipFound = True

49 break

50 if(flipFound == True):

51 continue

52 else:

53 e.append(m)

54 found = True

55 break

56

57 #check for reverse direction in case first search failed

58 if(found == False):

59 for m in mesh.edges:

60 ma = m.vertices[0] #begin vertex of edge e

61 mb = m.vertices[1] #end vertex of edge e

62

63 #...also exclude existing m’s in e

64 if(mb == eb and m not in e):

65 #create duplicate to reverse vertex indices

66 m_dup = mesh.copy()

67 f = m_dup.edges[m.index]

68 f.vertices[0] = mb

69 f.vertices[1] = ma

70 e.append(f)

71 else:

72 continue

73

74 #remove last element (was added twice)

75 del e[-1]

76

77 print("number of elements in e:",len(e))

78 print()

79 print("--- sorted edge list ---")

80 for idx, val in enumerate(e):

81 print("[",val.vertices[0],",",val.vertices[1],"]")

82 print()

83 print("--- original edge list ---")

84 for i in mesh.edges:

85 print("[",i.vertices[0],",",i.vertices[1],"]")

Appendix F

Area and Centroid Calculation

For cases where the centroid (also known as the centre of gravity) is needed, one can use

the equations from Bourke (1988) and the permutation σ in Algorithm 1. This goes as

follows. The projected two dimensional area of Ck is first calculated with:

area =
1

2

n−1∑
i=0

xiyi+1 − xi+1yi (F.1)

where x and y represent the two coordinates lying in the two dimensional coordinate

system1. Then, the centroid of each UCk can now be calculated as well with:

centroidx =
1

6(area)

n−1∑
i=0

(xi + xi+1) (xiyi+1 − xi+1yi) and (F.2a)

centroidy =
1

6(area)

n−1∑
i=0

(yi + yi+1) (xiyi+1 − xi+1yi) (F.2b)

However, as discussed in Chapter 3, the centroid does not always lie within a slice taken

from a UHM mesh and therefore is not suitable for this purpose.

1Note that the centroid is a different calculation than the standard arithmetic mean seen in other
contour extraction approaches and represents the centre of gravity of the Ck.

8

	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abbreviations
	Symbols
	1 Introduction
	1.1 Motivations and Contributions
	1.2 Chapters overview

	2 Related Work
	2.1 Musculoskeletal Models in Computer Graphics
	2.2 Musculotendon Models for Volumetric Deformation

	3 The Musculoskeletal Model
	3.1 Anatomical Accuracy and Real-Time Performance
	3.2 The Biomechanical Musculoskeletal Model
	3.3 The Polygonal Skeleton Meshes
	3.3.1 Attaching the Skeleton Meshes
	3.3.2 OpenSim Bodies in Cartesian Coordinates
	3.3.3 Semi-Automatic Skeleton Mesh Alignment

	3.4 A Simple Geometric Musculotendon Model
	3.4.1 Adding Action Lines and Via Points
	3.4.2 Adding Volume with Cross Sections
	3.4.3 Including Tendons into the Model

	3.5 Geometrical Enhancement with the UHM
	3.5.1 Preparing the UHM Meshes
	3.5.2 The UHM Mesh Shape Analysis
	3.5.3 A Technique for Musculotendon Enhancement
	3.5.3.1 Repositioning C's on the Surface of U
	3.5.3.2 Repositioning Elements of A within the Volume of U
	Match Detection
	Permuting Matches
	Determining an Interior "Inner" Point

	3.5.4 Iterating the Enhancement Process

	3.6 Adapting the LOD of the Musculotendon Model
	3.6.1 Longitudinal and Latitudinal Scaling
	3.6.2 Hexagons as a Lower Bound for Ck

	3.7 Drawing the Cylinder-based Musculotendon Unit
	3.7.1 Triangle Fans and Triangle Strips
	3.7.2 Applying Textures

	4 Real-Time Collision Detection and Response
	4.1 Custom Strategy for Discrete Collision Detection
	4.1.1 Collision Constraints for Muscle and Skeleton
	4.1.2 Discrete Collision Detection with Ray Casting

	4.2 Collision Response
	4.2.1 Retaining Cross Sectional Areas through Inflation

	5 Results and Discussion
	5.1 The UHM Enhancement
	5.1.1 Non-linear Longitudinal Scaling
	5.1.2 Approximating the UHM at Different Scales
	5.1.3 Match Detection

	5.2 Collision Detection and Response
	5.2.1 Radii Inflation

	5.3 Real-Time Performance

	6 Conclusion and Future Work
	6.1 Improvements and Future Considerations
	6.1.1 Biomechanical Accuracy
	6.1.2 Extending the Musculotendon Model
	6.1.2.1 Linked Transformation Correction for A
	6.1.2.2 Multiple Action Lines for Wide Attachments
	6.1.2.3 Distinct Heads
	6.1.2.4 A Geometric Representation for Ligaments

	6.1.3 Complete Collision Detection and Response
	6.1.4 The Musculotendon Model for FEM and Inverse Dynamics

	Bibliography
	A List of Included Musculotendons (OpenSim)
	B Ralph's Bone Hierarchy (RAGE)
	C Upper and Lower Body Skeleton Hierarchy (OpenSim)
	D List of Included UHM Meshes
	E Edge List Sort Algorithm
	F Area and Centroid Calculation

